BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8808793)

  • 1. Selective enhancement by serum factors of cyclic AMP accumulation in rat microglial cultures.
    Patrizio M; Riitano D; Costa T; Levi G
    Neurochem Int; 1996 Jul; 29(1):89-96. PubMed ID: 8808793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human immunodeficiency virus type 1 Tat protein decreases cyclic AMP synthesis in rat microglia cultures.
    Patrizio M; Colucci M; Levi G
    J Neurochem; 2001 Apr; 77(2):399-407. PubMed ID: 11299302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opposite regulation of adenylyl cyclase by protein kinase C in astrocyte and microglia cultures.
    Patrizio M; Slepko N; Levi G
    J Neurochem; 1997 Sep; 69(3):1267-77. PubMed ID: 9282952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabotropic glutamate receptor agonists potentiate cyclic AMP formation induced by forskolin or beta-adrenergic receptor activation in cerebral cortical astrocytes in culture.
    Balázs R; Miller S; Chun Y; O'Toole J; Cotman CW
    J Neurochem; 1998 Jun; 70(6):2446-58. PubMed ID: 9603209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein kinase C activation reduces microglial cyclic AMP response to prostaglandin E2 by interfering with EP2 receptors.
    Patrizio M; Colucci M; Levi G
    J Neurochem; 2000 Jan; 74(1):400-5. PubMed ID: 10617145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phorbol ester TPA potentiates cholera toxin- and isoproterenol-stimulated cyclic AMP-synthesis in primary astrocyte cultures.
    Gebicke-Haerter PJ; Seregi A; Schobert A; Hertting G
    Neurochem Int; 1994 Jan; 24(1):1-12. PubMed ID: 7907511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interferon-gamma and lipopolysaccharide reduce cAMP responses in cultured glial cells: reversal by a type IV phosphodiesterase inhibitor.
    Patrizio M; Costa T; Levi G
    Glia; 1995 Jun; 14(2):94-100. PubMed ID: 7558245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Down-regulation of 5-hydroxytryptamine7 receptors by dexamethasone in rat frontocortical astrocytes.
    Shimizu M; Nishida A; Zensho H; Miyata M; Yamawaki S
    J Neurochem; 1997 Jun; 68(6):2604-9. PubMed ID: 9166758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct mechanisms of forskolin-stimulated cyclic AMP accumulation and forskolin-potentiated hormone responses in C6-2B cells.
    Barovsky K; Pedone C; Brooker G
    Mol Pharmacol; 1984 Mar; 25(2):256-60. PubMed ID: 6321948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor necrosis factor reduces cAMP production in rat microglia.
    Patrizio M
    Glia; 2004 Nov; 48(3):241-9. PubMed ID: 15390118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human immunodeficiency virus coat protein gp120 inhibits the beta-adrenergic regulation of astroglial and microglial functions.
    Levi G; Patrizio M; Bernardo A; Petrucci TC; Agresti C
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1541-5. PubMed ID: 8381971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interleukin-1 beta increases prostaglandin E2-stimulated adenosine 3',5'-cyclic monophosphate production in rabbit pigmented ciliary epithelium.
    Fleisher LN; McGahan MC; Ferrell JB; Pagan I
    Exp Eye Res; 1996 Jul; 63(1):91-104. PubMed ID: 8983969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of microglial superoxide anion production by isoproterenol and dexamethasone.
    Colton CA; Chernyshev ON
    Neurochem Int; 1996 Jul; 29(1):43-53. PubMed ID: 8808788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forskolin potentiation of cholera toxin-stimulated cyclic AMP accumulation in intact C6-2B cells. Evidence for enhanced Gs-C coupling.
    Barovsky K; Brooker G
    Mol Pharmacol; 1985 Dec; 28(6):502-7. PubMed ID: 3001496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for different interactions between beta(1)- and beta(2)-adrenoceptor subtypes with adenylyl cyclase in the rat brain: a concentration-response study using forskolin.
    Morin D; Sapena R; Tillement JP; Urien S
    Pharmacol Res; 2000 Apr; 41(4):435-43. PubMed ID: 10704268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of forskolin on primary cultures of astrocytes and oligodendrocytes.
    Wu DK; de Vellis J
    J Cyclic Nucleotide Protein Phosphor Res; 1983; 9(1):59-67. PubMed ID: 6315794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forskolin modulates cyclic AMP generation in the rat myometrium. Interactions with isoproterenol and prostaglandins E2 and I2.
    Mokhtari A; Do Khac L; Tanfin Z; Harbon S
    J Cyclic Nucleotide Protein Phosphor Res; 1985; 10(3):213-27. PubMed ID: 2991348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paradoxical facilitation of acetylcholine release from parasympathetic nerves innervating guinea-pig trachea by isoprenaline.
    Belvisi MG; Patel HJ; Takahashi T; Barnes PJ; Giembycz MA
    Br J Pharmacol; 1996 Apr; 117(7):1413-20. PubMed ID: 8730733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of forskolin on Kupffer cell production of interleukin-10 and tumor necrosis factor alpha differ from those of endogenous adenylyl cyclase activators: possible role for adenylyl cyclase 9.
    Dahle MK; Myhre AE; Aasen AO; Wang JE
    Infect Immun; 2005 Nov; 73(11):7290-6. PubMed ID: 16239525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guanine nucleotide binding proteins and the regulation of cyclic AMP synthesis in NS20Y neuroblastoma cells: role of D1 dopamine and muscarinic receptors.
    Lovenberg TW; Nichols DE; Nestler EJ; Roth RH; Mailman RB
    Brain Res; 1991 Aug; 556(1):101-7. PubMed ID: 1682005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.