These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 8808939)

  • 1. Catabolite repression resistance of gnt operon expression in Bacillus subtilis conferred by mutation of His-15, the site of phosphoenolpyruvate-dependent phosphorylation of the phosphocarrier protein HPr.
    Reizer J; Bergstedt U; Galinier A; Küster E; Saier MH; Hillen W; Steinmetz M; Deutscher J
    J Bacteriol; 1996 Sep; 178(18):5480-6. PubMed ID: 8808939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis.
    Deutscher J; Reizer J; Fischer C; Galinier A; Saier MH; Steinmetz M
    J Bacteriol; 1994 Jun; 176(11):3336-44. PubMed ID: 8195089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorylation of either crh or HPr mediates binding of CcpA to the bacillus subtilis xyn cre and catabolite repression of the xyn operon.
    Galinier A; Deutscher J; Martin-Verstraete I
    J Mol Biol; 1999 Feb; 286(2):307-14. PubMed ID: 9973552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr.
    Fujita Y; Miwa Y; Galinier A; Deutscher J
    Mol Microbiol; 1995 Sep; 17(5):953-60. PubMed ID: 8596444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression.
    Darbon E; Servant P; Poncet S; Deutscher J
    Mol Microbiol; 2002 Feb; 43(4):1039-52. PubMed ID: 11929549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria.
    Deutscher J; Küster E; Bergstedt U; Charrier V; Hillen W
    Mol Microbiol; 1995 Mar; 15(6):1049-53. PubMed ID: 7623661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression.
    Galinier A; Haiech J; Kilhoffer MC; Jaquinod M; Stülke J; Deutscher J; Martin-Verstraete I
    Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8439-44. PubMed ID: 9237995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. trans-acting factors affecting carbon catabolite repression of the hut operon in Bacillus subtilis.
    Zalieckas JM; Wray LV; Fisher SH
    J Bacteriol; 1999 May; 181(9):2883-8. PubMed ID: 10217782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CcpB, a novel transcription factor implicated in catabolite repression in Bacillus subtilis.
    Chauvaux S; Paulsen IT; Saier MH
    J Bacteriol; 1998 Feb; 180(3):491-7. PubMed ID: 9457849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significance of HPr in catabolite repression of alpha-amylase.
    Voskuil MI; Chambliss GH
    J Bacteriol; 1996 Dec; 178(23):7014-5. PubMed ID: 8955329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon.
    Stülke J; Martin-Verstraete I; Charrier V; Klier A; Deutscher J; Rapoport G
    J Bacteriol; 1995 Dec; 177(23):6928-36. PubMed ID: 7592487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of HPr and Crh by HprK, early steps in the catabolite repression signalling pathway for the Bacillus subtilis levanase operon.
    Martin-Verstraete I; Deutscher J; Galinier A
    J Bacteriol; 1999 May; 181(9):2966-9. PubMed ID: 10217795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements.
    Miwa Y; Nagura K; Eguchi S; Fukuda H; Deutscher J; Fujita Y
    Mol Microbiol; 1997 Mar; 23(6):1203-13. PubMed ID: 9106211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr.
    Ye JJ; Reizer J; Cui X; Saier MH
    J Biol Chem; 1994 Apr; 269(16):11837-44. PubMed ID: 8163482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How seryl-phosphorylated HPr inhibits PrfA, a transcription activator of Listeria monocytogenes virulence genes.
    Herro R; Poncet S; Cossart P; Buchrieser C; Gouin E; Glaser P; Deutscher J
    J Mol Microbiol Biotechnol; 2005; 9(3-4):224-34. PubMed ID: 16415595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon.
    Martin-Verstraete I; Stülke J; Klier A; Rapoport G
    J Bacteriol; 1995 Dec; 177(23):6919-27. PubMed ID: 7592486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon catabolite control of the metabolic network in Bacillus subtilis.
    Fujita Y
    Biosci Biotechnol Biochem; 2009 Feb; 73(2):245-59. PubMed ID: 19202299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Q15H mutation enables Crh, a Bacillus subtilis HPr-like protein, to carry out some regulatory HPr functions, but does not make it an effective phosphocarrier for sugar transport.
    Martin-Verstraete I; Galinier A; Darbon E; Quentin Y; Kilhoffer MC; Charrier V; Haiech J; Rapoport G; Deutscher J
    Microbiology (Reading); 1999 Nov; 145 ( Pt 11)():3195-3204. PubMed ID: 10589728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon catabolite repression in Bacillus subtilis: quantitative analysis of repression exerted by different carbon sources.
    Singh KD; Schmalisch MH; Stülke J; Görke B
    J Bacteriol; 2008 Nov; 190(21):7275-84. PubMed ID: 18757537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation.
    Ludwig H; Rebhan N; Blencke HM; Merzbacher M; Stülke J
    Mol Microbiol; 2002 Jul; 45(2):543-53. PubMed ID: 12123463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.