BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 8808943)

  • 1. Physiological changes and alk gene instability in Pseudomonas oleovorans during induction and expression of alk genes.
    Chen Q; Janssen DB; Witholt B
    J Bacteriol; 1996 Sep; 178(18):5508-12. PubMed ID: 8808943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth on octane alters the membrane lipid fatty acids of Pseudomonas oleovorans due to the induction of alkB and synthesis of octanol.
    Chen Q; Janssen DB; Witholt B
    J Bacteriol; 1995 Dec; 177(23):6894-901. PubMed ID: 7592483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The alkane oxidation system of Pseudomonas oleovorans: induction of the alk genes in Escherichia coli W3110 (pGEc47) affects membrane biogenesis and results in overexpression of alkane hydroxylase in a distinct cytoplasmic membrane subfraction.
    Nieboer M; Kingma J; Witholt B
    Mol Microbiol; 1993 Jun; 8(6):1039-51. PubMed ID: 8361351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The PalkBFGHJKL promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli alk+ recombinants.
    Staijen IE; Marcionelli R; Witholt B
    J Bacteriol; 1999 Mar; 181(5):1610-6. PubMed ID: 10049394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes.
    van Beilen JB; Panke S; Lucchini S; Franchini AG; Röthlisberger M; Witholt B
    Microbiology (Reading); 2001 Jun; 147(Pt 6):1621-1630. PubMed ID: 11390693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overproduction of a foreign membrane protein in Escherichia coli stimulates and depends on phospholipid synthesis.
    Nieboer M; Vis AJ; Witholt B
    Eur J Biochem; 1996 Oct; 241(2):691-6. PubMed ID: 8917473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetics of alkane oxidation by Pseudomonas oleovorans.
    van Beilen JB; Wubbolts MG; Witholt B
    Biodegradation; 1994 Dec; 5(3-4):161-74. PubMed ID: 7532480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA sequence determination and functional characterization of the OCT-plasmid-encoded alkJKL genes of Pseudomonas oleovorans.
    van Beilen JB; Eggink G; Enequist H; Bos R; Witholt B
    Mol Microbiol; 1992 Nov; 6(21):3121-36. PubMed ID: 1453953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of methyl tert-butyl ether by alkane hydroxylase in dicyclopropylketone-induced and n-octane-grown Pseudomonas putida GPo1.
    Smith CA; Hyman MR
    Appl Environ Microbiol; 2004 Aug; 70(8):4544-50. PubMed ID: 15294784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of alkane hydroxylase of Pseudomonas oleovorans increases the iron requirement of alk+ bacterial strains.
    Staijen IE; Witholt B
    Biotechnol Bioeng; 1998 Jan; 57(2):228-37. PubMed ID: 10099198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determinants for overproduction of the Pseudomonas oleovorans cytoplasmic membrane protein alkane hydroxylase in alk+ Escherichia coli W3110.
    Nieboer M; Gunnewijk M; van Beilen JB; Witholt B
    J Bacteriol; 1997 Feb; 179(3):762-8. PubMed ID: 9006031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The AlkB monooxygenase of Pseudomonas oleovorans--synthesis, stability and level in recombinant Escherichia coli and the native host.
    Staijen IE; Hatzimanikatis V; Witholt B
    Eur J Biochem; 1997 Mar; 244(2):462-70. PubMed ID: 9119013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon-source-dependent expression of the PalkB promoter from the Pseudomonas oleovorans alkane degradation pathway.
    Yuste L; Canosa I; Rojo F
    J Bacteriol; 1998 Oct; 180(19):5218-26. PubMed ID: 9748457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression, stability and performance of the three-component alkane mono-oxygenase of Pseudomonas oleovorans in Escherichia coli.
    Staijen IE; Van Beilen JB; Witholt B
    Eur J Biochem; 2000 Apr; 267(7):1957-65. PubMed ID: 10727934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli.
    Eggink G; Lageveen RG; Altenburg B; Witholt B
    J Biol Chem; 1987 Dec; 262(36):17712-8. PubMed ID: 2826430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis.
    van Beilen JB; Marín MM; Smits TH; Röthlisberger M; Franchini AG; Witholt B; Rojo F
    Environ Microbiol; 2004 Mar; 6(3):264-73. PubMed ID: 14871210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel alkane monooxygenase (
    Wang S; Li G; Liao Z; Liu T; Ma T
    PeerJ; 2022; 10():e14147. PubMed ID: 36193440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase bioreactors: background and economic potential.
    Witholt B; de Smet MJ; Kingma J; van Beilen JB; Kok M; Lageveen RG; Eggink G
    Trends Biotechnol; 1990 Feb; 8(2):46-52. PubMed ID: 1366497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A positive feedback mechanism controls expression of AlkS, the transcriptional regulator of the Pseudomonas oleovorans alkane degradation pathway.
    Canosa I; Sánchez-Romero JM; Yuste L; Rojo F
    Mol Microbiol; 2000 Feb; 35(4):791-9. PubMed ID: 10692156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN.
    Andreoni V; Bernasconi S; Colombo M; van Beilen JB; Cavalca L
    Environ Microbiol; 2000 Oct; 2(5):572-7. PubMed ID: 11233165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.