These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 8809069)

  • 21. Inhibition of cartilage degradation and changes in physical properties induced by IL-1beta and retinoic acid using matrix metalloproteinase inhibitors.
    Bonassar LJ; Sandy JD; Lark MW; Plaas AH; Frank EH; Grodzinsky AJ
    Arch Biochem Biophys; 1997 Aug; 344(2):404-12. PubMed ID: 9264555
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation and inhibition of endogenous matrix metalloproteinases in articular cartilage: effects on composition and biophysical properties.
    Bonassar LJ; Stinn JL; Paguio CG; Frank EH; Moore VL; Lark MW; Sandy JD; Hollander AP; Poole AR; Grodzinsky AJ
    Arch Biochem Biophys; 1996 Sep; 333(2):359-67. PubMed ID: 8809074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic compression augments interstitial transport of a glucose-like solute in articular cartilage.
    Evans RC; Quinn TM
    Biophys J; 2006 Aug; 91(4):1541-7. PubMed ID: 16679370
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrical signals for chondrocytes in cartilage.
    Lai WM; Sun DD; Ateshian GA; Guo XE; Mow VC
    Biorheology; 2002; 39(1-2):39-45. PubMed ID: 12082265
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sliding enhances fluid and solute transport into buried articular cartilage contacts.
    Graham BT; Moore AC; Burris DL; Price C
    Osteoarthritis Cartilage; 2017 Dec; 25(12):2100-2107. PubMed ID: 28888900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electric field stimulation can increase protein synthesis in articular cartilage explants.
    MacGinitie LA; Gluzband YA; Grodzinsky AJ
    J Orthop Res; 1994 Mar; 12(2):151-60. PubMed ID: 8164086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measuring principles of frictional coefficients in cartilaginous tissues and its substitutes.
    Huyghe JM; Janssen CF; Van Donkelaar CC; Lanir Y
    Biorheology; 2002; 39(1-2):47-53. PubMed ID: 12082266
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage.
    Guilak F; Mow VC
    J Biomech; 2000 Dec; 33(12):1663-73. PubMed ID: 11006391
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elucidation of the transport pathway in hairless rat skin enhanced by low-frequency sonophoresis based on the solute-water transport relationship and confocal microscopy.
    Morimoto Y; Mutoh M; Ueda H; Fang L; Hirayama K; Atobe M; Kobayashi D
    J Control Release; 2005 Apr; 103(3):587-97. PubMed ID: 15820406
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Effect of Antibody Size and Mechanical Loading on Solute Diffusion Through the Articular Surface of Cartilage.
    DiDomenico CD; Goodearl A; Yarilina A; Sun V; Mitra S; Sterman AS; Bonassar LJ
    J Biomech Eng; 2017 Sep; 139(9):. PubMed ID: 28672295
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The enhancement of periosteal chondrogenesis in organ culture by dynamic fluid pressure.
    Mukherjee N; Saris DB; Schultz FM; Berglund LJ; An KN; O' Driscoll SW
    J Orthop Res; 2001 Jul; 19(4):524-30. PubMed ID: 11518256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of static compression on proteoglycan biosynthesis by chondrocytes transplanted to articular cartilage in vitro.
    Chen AC; Sah RL
    J Orthop Res; 1998 Sep; 16(5):542-50. PubMed ID: 9820276
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overexpression of human fibroblast growth factor 2 stimulates cell proliferation in an ex vivo model of articular chondrocyte transplantation.
    Madry H; Emkey G; Zurakowski D; Trippel SB
    J Gene Med; 2004 Feb; 6(2):238-45. PubMed ID: 14978777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of shear stress on articular chondrocyte metabolism.
    Lane Smith R; Trindade MC; Ikenoue T; Mohtai M; Das P; Carter DR; Goodman SB; Schurman DJ
    Biorheology; 2000; 37(1-2):95-107. PubMed ID: 10912182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants.
    Hammel HT; Schlegel WM
    Cell Biochem Biophys; 2005; 42(3):277-345. PubMed ID: 15976460
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical effects of ionic replacements in articular cartilage. Part I: The constitutive model.
    Loret B; Simões FM
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):63-80. PubMed ID: 16001249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solute transport in the deep and calcified zones of articular cartilage.
    Arkill KP; Winlove CP
    Osteoarthritis Cartilage; 2008 Jun; 16(6):708-14. PubMed ID: 18023368
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of oscillating fluid shear on solute transport in cortical bone.
    Schmidt SM; McCready MJ; Ostafin AE
    J Biomech; 2005 Dec; 38(12):2337-43. PubMed ID: 16214481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mapping the spatiotemporal evolution of solute transport in articular cartilage explants reveals how cartilage recovers fluid within the contact area during sliding.
    Graham BT; Moore AC; Burris DL; Price C
    J Biomech; 2018 Apr; 71():271-276. PubMed ID: 29454544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.