These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 8809150)

  • 1. Antimicrobial alpha, alpha-dialkylated amino acid rich peptides with in-vivo activity against an intracellular pathogen.
    Yokum TS; Elzer PH; McLaughlin ML
    J Med Chem; 1996 Sep; 39(19):3603-5. PubMed ID: 8809150
    [No Abstract]   [Full Text] [Related]  

  • 2. Peptides with indirect in vivo activity against an intracellular pathogen: selective lysis of infected macrophages.
    Yokum TS; Hammer RP; McLaughlin ML; Elzer PH
    J Pept Res; 2002 Jan; 59(1):9-17. PubMed ID: 11906603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved solid-phase synthesis of alpha,alpha-dialkylated amino acid-rich peptides with antimicrobial activity.
    Haynes SR; Hagins SD; Juban MM; Elzer PH; Hammer RP
    J Pept Res; 2005 Dec; 66(6):333-47. PubMed ID: 16316449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial activity of short arginine- and tryptophan-rich peptides.
    Strøm MB; Rekdal O; Svendsen JS
    J Pept Sci; 2002 Aug; 8(8):431-7. PubMed ID: 12212806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of shortening lactoferrin derived peptides against tumour cells, bacteria and normal human cells.
    Yang N; Strøm MB; Mekonnen SM; Svendsen JS; Rekdal O
    J Pept Sci; 2004 Jan; 10(1):37-46. PubMed ID: 14959890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New potent antimicrobial peptides from the venom of Polistinae wasps and their analogs.
    Cerovský V; Slaninová J; Fucík V; Hulacová H; Borovicková L; Jezek R; Bednárová L
    Peptides; 2008 Jun; 29(6):992-1003. PubMed ID: 18375018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two families of antimicrobial peptides from wasp (Vespa magnifica) venom.
    Xu X; Li J; Lu Q; Yang H; Zhang Y; Lai R
    Toxicon; 2006 Feb; 47(2):249-53. PubMed ID: 16330062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudin-2: an antimicrobial peptide with low hemolytic activity from the skin of the paradoxical frog.
    Olson L; Soto AM; Knoop FC; Conlon JM
    Biochem Biophys Res Commun; 2001 Nov; 288(4):1001-5. PubMed ID: 11689009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of bactericidal oligopeptides designed on the basis of an insect anti-bacterial peptide.
    Saido-Sakanaka H; Ishibashi J; Sagisaka A; Momotani E; Yamakawa M
    Biochem J; 1999 Feb; 338 ( Pt 1)(Pt 1):29-33. PubMed ID: 9931294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibiotic activity of pentadecapeptides modelled from amino acid descriptors.
    Lejon T; Strøm MB; Svendsen JS
    J Pept Sci; 2001 Feb; 7(2):74-81. PubMed ID: 11277499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-function relationships in the tryptophan-rich, antimicrobial peptide indolicidin.
    Staubitz P; Peschel A; Nieuwenhuizen WF; Otto M; Götz F; Jung G; Jack RW
    J Pept Sci; 2001 Oct; 7(10):552-64. PubMed ID: 11695650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial and cytolytic properties of the frog skin peptide, kassinatuerin-1 and its L- and D-lysine-substituted derivatives.
    Conlon JM; Abraham B; Galadari S; Knoop FC; Sonnevend A; Pál T
    Peptides; 2005 Nov; 26(11):2104-10. PubMed ID: 15885852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of potent, non-toxic antimicrobial agents based upon the naturally occurring frog skin peptides, ascaphin-8 and peptide XT-7.
    Conlon JM; Galadari S; Raza H; Condamine E
    Chem Biol Drug Des; 2008 Jul; 72(1):58-64. PubMed ID: 18554256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kassinatuerin-1: a peptide with broad-spectrum antimicrobial activity isolated from the skin of the hyperoliid frog, Kassina senegalensis.
    Mattute B; Knoop FC; Conlon JM
    Biochem Biophys Res Commun; 2000 Feb; 268(2):433-6. PubMed ID: 10679222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nontoxic membrane-active antimicrobial arylamide oligomers.
    Liu D; Choi S; Chen B; Doerksen RJ; Clements DJ; Winkler JD; Klein ML; DeGrado WF
    Angew Chem Int Ed Engl; 2004 Feb; 43(9):1158-62. PubMed ID: 14983462
    [No Abstract]   [Full Text] [Related]  

  • 16. Prediction of antibiotic activity and synthesis of new pentadecapeptides based on lactoferricins.
    Lejon T; Stiberg T; Strøm MB; Svendsen JS
    J Pept Sci; 2004 Jun; 10(6):329-35. PubMed ID: 15214437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the urease operon of Brucella abortus and assessment of its role in virulence of the bacterium.
    Sangari FJ; Seoane A; Rodríguez MC; Agüero J; García Lobo JM
    Infect Immun; 2007 Feb; 75(2):774-80. PubMed ID: 17101645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic interactions between mammalian antimicrobial defense peptides.
    Yan H; Hancock RE
    Antimicrob Agents Chemother; 2001 May; 45(5):1558-60. PubMed ID: 11302828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay among folding, sequence, and lipophilicity in the antibacterial and hemolytic activities of alpha/beta-peptides.
    Schmitt MA; Weisblum B; Gellman SH
    J Am Chem Soc; 2007 Jan; 129(2):417-28. PubMed ID: 17212422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recombinant expression of indolicidin concatamers in Escherichia coli.
    Morin KM; Arcidiacono S; Beckwitt R; Mello CM
    Appl Microbiol Biotechnol; 2006 May; 70(6):698-704. PubMed ID: 16158282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.