These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 8809314)

  • 41. In vitro studies of dental plaque formation: adsorption of oral streptococci to hydroxyaptite.
    Appelbaum B; Golub E; Holt SC; Rosan B
    Infect Immun; 1979 Aug; 25(2):717-28. PubMed ID: 489128
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interactions of streptococcal glucosyltransferases with alpha-amylase and starch on the surface of saliva-coated hydroxyapatite.
    Vacca-Smith AM; Venkitaraman AR; Quivey RG; Bowen WH
    Arch Oral Biol; 1996 Mar; 41(3):291-8. PubMed ID: 8735015
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cell-to-cell interaction of Streptococcus sanguis and Propionibacterium acnes on saliva-coated hydroxyapatite.
    Ciardi JE; McCray GF; Kolenbrander PE; Lau A
    Infect Immun; 1987 Jun; 55(6):1441-6. PubMed ID: 3570474
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Compounds which affect the adherence of Streptococcus sanguis and Streptococcus mutans to hydroxyapatite.
    Liljemark WF; Schauer SV; Bloomquist CG
    J Dent Res; 1978 Feb; 57(2):373-9. PubMed ID: 308071
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Adherence of microorganisms to rat salivary pellicles.
    Kopec LK; Bowen WH
    Caries Res; 1995; 29(6):507-12. PubMed ID: 8556756
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The influence of albumin on adsorption of bacteria on hydroxyapatite beads in vitro and human tooth surfaces in vivo.
    Yen S; Gibbons RJ
    Arch Oral Biol; 1987; 32(7):531-3. PubMed ID: 3479093
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adhesion of Streptococcus sanguinis to glass surfaces measured by isothermal microcalorimetry (IMC).
    Hauser-Gerspach I; de Freitas PS; Dan Daniels AU; Meyer J
    J Biomed Mater Res B Appl Biomater; 2008 Apr; 85(1):42-9. PubMed ID: 17696148
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of saliva from 'heavy' and 'light' plaque formers on the colloidal stability of bacterial suspensions.
    Simonsson T; Glantz PO
    Acta Odontol Scand; 1988 Aug; 46(4):195-7. PubMed ID: 3188846
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Glucosyltransferase phase variation in Streptococcus gordonii modifies adhesion to saliva-coated hydroxyapatite surfaces in a sucrose-independent manner.
    Vickerman MM; Clewell DB; Jones GW
    Oral Microbiol Immunol; 1992 Apr; 7(2):118-20. PubMed ID: 1388259
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inhibition of the cooperative adhesion of Streptococcus sanguis to hydroxylapatite.
    Zhang XH; Rosenberg M; Doyle RJ
    FEMS Microbiol Lett; 1990 Sep; 59(3):315-8. PubMed ID: 2177022
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interactions of delmopinol with constituents of experimental pellicle.
    Steinberg D; Beeman D; Bowen WH
    J Dent Res; 1992 Nov; 71(11):1797-802. PubMed ID: 1383304
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A study of in vitro attachment of Streptococcus sanguis and Actinomyces viscosus to saliva-treated titanium.
    Wolinsky LE; de Camargo PM; Erard JC; Newman MG
    Int J Oral Maxillofac Implants; 1989; 4(1):27-31. PubMed ID: 2599579
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Competitive binding among oral strptococci to hydroxyapatite.
    Liljemark WF; Schauer SV
    J Dent Res; 1977 Feb; 56(2):157-65. PubMed ID: 264883
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Regulation of adherence to serum-coated hydroxyapatite by Streptococcus sanguis].
    Song X; Pan Y; Kong Q
    Zhonghua Kou Qiang Yi Xue Za Zhi; 1999 May; 34(3):172-4. PubMed ID: 11776933
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of crevicular fluid and lysosomal enzymes on the adherence of streptococci and bacteroides to hydroxyapatite.
    Cimasoni G; Song M; McBride BC
    Infect Immun; 1987 Jun; 55(6):1484-9. PubMed ID: 3032801
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bacterial biofilm development on hydroxyapatite-coated glass.
    Elliott D; Pratten J; Edwards M; Crowther J; Petrie A; Wilson M
    Curr Microbiol; 2005 Jul; 51(1):41-5. PubMed ID: 15942698
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Anti-plaque effect of a synergistic combination of green tea and Salvadora persica L. against primary colonizers of dental plaque.
    Abdulbaqi HR; Himratul-Aznita WH; Baharuddin NA
    Arch Oral Biol; 2016 Oct; 70():117-124. PubMed ID: 27343694
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Polymer coated liposomes for dental drug delivery--interactions with parotid saliva and dental enamel.
    Nguyen S; Hiorth M; Rykke M; Smistad G
    Eur J Pharm Sci; 2013 Sep; 50(1):78-85. PubMed ID: 23524255
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of cranberry proanthocyanidins on formation of biofilms by Streptococcus mutans on saliva-coated apatitic surface and on dental caries development in vivo.
    Koo H; Duarte S; Murata RM; Scott-Anne K; Gregoire S; Watson GE; Singh AP; Vorsa N
    Caries Res; 2010; 44(2):116-26. PubMed ID: 20234135
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Detachment of oral bacteria from saliva-coated hydroxyapatite by human polymorphonuclear leukocytes.
    Erard JC; Miyasaki KT; Wolinsky LE
    J Periodontol; 1989 Apr; 60(4):211-6. PubMed ID: 2724035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.