BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 8809866)

  • 1. Neurotoxic versus neuroprotective actions of endogenous opioid peptides: implications for treatment of CNS injury.
    Faden AI
    NIDA Res Monogr; 1996; 163():318-30. PubMed ID: 8809866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opioids modulate post-ischemic progression in a rat model of stroke.
    Kao TK; Ou YC; Liao SL; Chen WY; Wang CC; Chen SY; Chiang AN; Chen CJ
    Neurochem Int; 2008 May; 52(6):1256-65. PubMed ID: 18294735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kappa opioids: therapeutic considerations in epilepsy and CNS injury.
    Tortella FC; DeCoster MA
    Clin Neuropharmacol; 1994 Oct; 17(5):403-16. PubMed ID: 9316689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroprotective effects of hibernation-regulating substances against low-temperature-induced cell death in cultured hamster hippocampal neurons.
    Tamura Y; Monden M; Shintani M; Kawai A; Shiomi H
    Brain Res; 2006 Sep; 1108(1):107-16. PubMed ID: 16854391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynorphin A1-13 causes elevation of serum levels of prolactin through an opioid receptor mechanism in humans: gender differences and implications for modulation of dopaminergic tone in the treatment of addictions.
    Kreek MJ; Schluger J; Borg L; Gunduz M; Ho A
    J Pharmacol Exp Ther; 1999 Jan; 288(1):260-9. PubMed ID: 9862779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of mu and kappa opioids on injury-induced microglial accumulation in leech CNS: involvement of the nitric oxide pathway.
    Yahyavi-Firouz-Abadi N; Tahsili-Fahadan P; Ostad SN
    Neuroscience; 2007 Feb; 144(3):1075-86. PubMed ID: 17169497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effect of neurotoxin on spinal cord injury in rats].
    Ye X; Li M; Li J
    Zhonghua Wai Ke Za Zhi; 1998 Jan; 36(1):31-4. PubMed ID: 11715537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformation-activity relationships of opioid peptides with selective activities at opioid receptors.
    Hruby VJ; Agnes RS
    Biopolymers; 1999; 51(6):391-410. PubMed ID: 10797229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The roles of different subtypes of opioid receptors in mediating the nucleus submedius opioid-evoked antiallodynia in a neuropathic pain model of rats.
    Wang JY; Zhao M; Yuan YK; Fan GX; Jia H; Tang JS
    Neuroscience; 2006; 138(4):1319-27. PubMed ID: 16472929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peripherally-acting opioids.
    Smith HS
    Pain Physician; 2008 Mar; 11(2 Suppl):S121-32. PubMed ID: 18443636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opioid preconditioning induces opioid receptor-dependent delayed neuroprotection against ischemia in rats.
    Zhao P; Huang Y; Zuo Z
    J Neuropathol Exp Neurol; 2006 Oct; 65(10):945-52. PubMed ID: 17021399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of endogenous opioid peptides in the antinociception induced by the novel dermorphin tetrapeptide analog amidino-TAPA.
    Mizoguchi H; Watanabe C; Watanabe H; Moriyama K; Sato B; Ohwada K; Yonezawa A; Sakurada T; Sakurada S
    Eur J Pharmacol; 2007 Apr; 560(2-3):150-9. PubMed ID: 17307162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femtomolar concentrations of dynorphins protect rat mesencephalic dopaminergic neurons against inflammatory damage.
    Liu B; Qin L; Yang SN; Wilson BC; Liu Y; Hong JS
    J Pharmacol Exp Ther; 2001 Sep; 298(3):1133-41. PubMed ID: 11504811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-activity analysis of dynorphin A toxicity in spinal cord neurons: intrinsic neurotoxicity of dynorphin A and its carboxyl-terminal, nonopioid metabolites.
    Hauser KF; Knapp PE; Turbek CS
    Exp Neurol; 2001 Mar; 168(1):78-87. PubMed ID: 11170722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of opioid receptor distributions in the rat central nervous system.
    Gray AC; Coupar IM; White PJ
    Life Sci; 2006 Jul; 79(7):674-85. PubMed ID: 16546223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preclinical studies of opioids and opioid antagonists on gastrointestinal function.
    Greenwood-Van Meerveld B; Gardner CJ; Little PJ; Hicks GA; Dehaven-Hudkins DL
    Neurogastroenterol Motil; 2004 Oct; 16 Suppl 2():46-53. PubMed ID: 15357851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opioid receptor subtypes differentially modulate serotonin efflux in the rat central nervous system.
    Tao R; Auerbach SB
    J Pharmacol Exp Ther; 2002 Nov; 303(2):549-56. PubMed ID: 12388635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynorphin A as a potential endogenous ligand for four members of the opioid receptor gene family.
    Zhang S; Tong Y; Tian M; Dehaven RN; Cortesburgos L; Mansson E; Simonin F; Kieffer B; Yu L
    J Pharmacol Exp Ther; 1998 Jul; 286(1):136-41. PubMed ID: 9655852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynorphin A(1-8): stability and implications for in vitro opioid activity.
    Bell KM; Traynor JR
    Can J Physiol Pharmacol; 1998 Mar; 76(3):325-33. PubMed ID: 9673796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opioid receptor affinity and analgesic activity of O- and C-glycosylated opioid peptides.
    Negri L; Melchiorri P; Rocchi R; Scolaro B
    Acta Physiol Hung; 1996; 84(4):441-3. PubMed ID: 9328626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.