BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 8810046)

  • 1. Hydration properties of lamellar and non-lamellar phases of phosphatidylcholine and phosphatidylethanolamine.
    McIntosh TJ
    Chem Phys Lipids; 1996 Jul; 81(2):117-31. PubMed ID: 8810046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation in hydration forces between neutral phospholipid bilayers: evidence for hydration attraction.
    Rand RP; Fuller N; Parsegian VA; Rau DC
    Biochemistry; 1988 Oct; 27(20):7711-22. PubMed ID: 3207702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bending, hydration and interstitial energies quantitatively account for the hexagonal-lamellar-hexagonal reentrant phase transition in dioleoylphosphatidylethanolamine.
    Kozlov MM; Leikin S; Rand RP
    Biophys J; 1994 Oct; 67(4):1603-11. PubMed ID: 7819492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress.
    Rand RP; Fuller NL; Gruner SM; Parsegian VA
    Biochemistry; 1990 Jan; 29(1):76-87. PubMed ID: 2322550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental tests for protrusion and undulation pressures in phospholipid bilayers.
    McIntosh TJ; Advani S; Burton RE; Zhelev DV; Needham D; Simon SA
    Biochemistry; 1995 Jul; 34(27):8520-32. PubMed ID: 7612594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct NMR evidence for ethanol binding to the lipid-water interface of phospholipid bilayers.
    Barry JA; Gawrisch K
    Biochemistry; 1994 Jul; 33(26):8082-8. PubMed ID: 8025114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of hydration and steric (entropic) pressures to the interactions between phosphatidylcholine bilayers: experiments with the subgel phase.
    McIntosh TJ; Simon SA
    Biochemistry; 1993 Aug; 32(32):8374-84. PubMed ID: 8347634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphatidylcholine-fatty acid membranes: effects of headgroup hydration on the phase behaviour and structural parameters of the gel and inverse hexagonal (H(II)) phases.
    Seddon JM; Templer RH; Warrender NA; Huang Z; Cevc G; Marsh D
    Biochim Biophys Acta; 1997 Jul; 1327(1):131-47. PubMed ID: 9247174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions.
    Marra J; Israelachvili J
    Biochemistry; 1985 Aug; 24(17):4608-18. PubMed ID: 4063343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of hydrogen bonding to lipid-lipid interactions in membranes and the role of lipid order: effects of cholesterol, increased phospholipid unsaturation, and ethanol.
    Slater SJ; Ho C; Taddeo FJ; Kelly MB; Stubbs CD
    Biochemistry; 1993 Apr; 32(14):3714-21. PubMed ID: 8466911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of hydrogen bond formation in phosphatidylethanolamine bilayers.
    Pink DA; McNeil S; Quinn B; Zuckermann MJ
    Biochim Biophys Acta; 1998 Jan; 1368(2):289-305. PubMed ID: 9459606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylethanolamine bilayers.
    McMullen TP; Lewis RN; McElhaney RN
    Biochim Biophys Acta; 1999 Jan; 1416(1-2):119-34. PubMed ID: 9889344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships between equilibrium spreading pressure and phase equilibria of phospholipid bilayers and monolayers at the air-water interface.
    Mansour HM; Zografi G
    Langmuir; 2007 Mar; 23(7):3809-19. PubMed ID: 17323986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water adsorption isotherms and hydration forces for lysolipids and diacyl phospholipids.
    Marsh D
    Biophys J; 1989 Jun; 55(6):1093-100. PubMed ID: 2765647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of lipid chain length on molecular interactions between paclitaxel and phospholipid within model biomembranes.
    Zhao L; Feng SS
    J Colloid Interface Sci; 2004 Jun; 274(1):55-68. PubMed ID: 15120278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of interactions at the lipid-water interface for domain formation.
    Gawrisch K; Barry JA; Holte LL; Sinnwell T; Bergelson LD; Ferretti JA
    Mol Membr Biol; 1995; 12(1):83-8. PubMed ID: 7767388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of hydrostatic pressure on the bilayer phase behavior of symmetric and asymmetric phospholipids with the same total chain length.
    Goto M; Kusube M; Tamai N; Matsuki H; Kaneshina S
    Biochim Biophys Acta; 2008 Apr; 1778(4):1067-78. PubMed ID: 18190778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calorimetric and spectroscopic studies of the polymorphic phase behavior of a homologous series of n-saturated 1,2-diacyl phosphatidylethanolamines.
    Lewis RN; McElhaney RN
    Biophys J; 1993 Apr; 64(4):1081-96. PubMed ID: 8494972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strength of Ca(2+) binding to retinal lipid membranes: consequences for lipid organization.
    Huster D; Arnold K; Gawrisch K
    Biophys J; 2000 Jun; 78(6):3011-8. PubMed ID: 10827979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid- and liquid-phase equilibria in phosphatidylcholine/phosphatidylethanolamine mixtures. A calorimetric study.
    Silvius JR
    Biochim Biophys Acta; 1986 May; 857(2):217-28. PubMed ID: 3707951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.