These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 8810056)

  • 1. Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism.
    Smith EA; Macfarlane GT
    J Appl Bacteriol; 1996 Sep; 81(3):288-302. PubMed ID: 8810056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecological and physiological studies on large intestinal bacteria in relation to production of hydrolytic and reductive enzymes involved in formation of genotoxic metabolites.
    McBain AJ; Macfarlane GT
    J Med Microbiol; 1998 May; 47(5):407-16. PubMed ID: 9879941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of fermentation reactions in different regions of the human colon.
    Macfarlane GT; Gibson GR; Cummings JH
    J Appl Bacteriol; 1992 Jan; 72(1):57-64. PubMed ID: 1541601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigations of bifidobacterial ecology and oligosaccharide metabolism in a three-stage compound continuous culture system.
    McBain AJ; Macfarlane GT
    Scand J Gastroenterol Suppl; 1997; 222():32-40. PubMed ID: 9145444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human colonic microbiota: ecology, physiology and metabolic potential of intestinal bacteria.
    Macfarlane GT; Macfarlane S
    Scand J Gastroenterol Suppl; 1997; 222():3-9. PubMed ID: 9145437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissimilatory amino Acid metabolism in human colonic bacteria.
    Smith EA; Macfarlane GT
    Anaerobe; 1997 Oct; 3(5):327-37. PubMed ID: 16887608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of genotoxic enzyme activities by non-digestible oligosaccharide metabolism in in-vitro human gut bacterial ecosystems.
    McBAIN AJ; Macfarlane GT
    J Med Microbiol; 2001 Sep; 50(9):833-842. PubMed ID: 11549186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the effect of system retention time on bacterial populations colonizing a three-stage continuous culture model of the human large gut using FISH techniques.
    Child MW; Kennedy A; Walker AW; Bahrami B; Macfarlane S; Macfarlane GT
    FEMS Microbiol Ecol; 2006 Feb; 55(2):299-310. PubMed ID: 16420637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of phenol, p-cresol and indole on growth and survival of intestinal lactic acid bacteria.
    Nowak A; Libudzisz Z
    Anaerobe; 2006 Apr; 12(2):80-4. PubMed ID: 16701619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of intestinal bacteria in nutrient metabolism.
    Cummings JH; Macfarlane GT
    JPEN J Parenter Enteral Nutr; 1997; 21(6):357-65. PubMed ID: 9406136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic and Microbial Modulation of the Large Intestine Ecosystem by Non-Absorbed Diet Phenolic Compounds: A Review.
    Mosele JI; Macià A; Motilva MJ
    Molecules; 2015 Sep; 20(9):17429-68. PubMed ID: 26393570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutual Interaction of Phenolic Compounds and Microbiota: Metabolism of Complex Phenolic Apigenin-C- and Kaempferol-O-Derivatives by Human Fecal Samples.
    Vollmer M; Esders S; Farquharson FM; Neugart S; Duncan SH; Schreiner M; Louis P; Maul R; Rohn S
    J Agric Food Chem; 2018 Jan; 66(2):485-497. PubMed ID: 29236499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine.
    Wang X; Gibson GR
    J Appl Bacteriol; 1993 Oct; 75(4):373-80. PubMed ID: 8226394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Faecal microbial metabolism of olive oil phenolic compounds: in vitro and in vivo approaches.
    Mosele JI; Martín-Peláez S; Macià A; Farràs M; Valls RM; Catalán Ú; Motilva MJ
    Mol Nutr Food Res; 2014 Sep; 58(9):1809-19. PubMed ID: 24990102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth.
    Hidalgo M; Oruna-Concha MJ; Kolida S; Walton GE; Kallithraka S; Spencer JP; de Pascual-Teresa S
    J Agric Food Chem; 2012 Apr; 60(15):3882-90. PubMed ID: 22439618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling the role of microbial p-cresol in colorectal genotoxicity.
    Al Hinai EA; Kullamethee P; Rowland IR; Swann J; Walton GE; Commane DM
    Gut Microbes; 2019; 10(3):398-411. PubMed ID: 30359553
    [No Abstract]   [Full Text] [Related]  

  • 17. Starch utilization by the human large intestinal microflora.
    Macfarlane GT; Englyst HN
    J Appl Bacteriol; 1986 Mar; 60(3):195-201. PubMed ID: 2423494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Faecal steroids and colorectal cancer: the effect of lactulose on faecal bacterial metabolism in a continuous culture model of the large intestine.
    Fadden K; Owen RW
    Eur J Cancer Prev; 1992 Feb; 1(2):113-27. PubMed ID: 1463973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistant starch reduces large intestinal pH and promotes fecal lactobacilli and bifidobacteria in pigs.
    Metzler-Zebeli BU; Canibe N; Montagne L; Freire J; Bosi P; Prates JAM; Tanghe S; Trevisi P
    Animal; 2019 Jan; 13(1):64-73. PubMed ID: 29745350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro kinetic analysis of carbohydrate and aromatic amino acid metabolism of different members of the human colon.
    Van der Meulen R; Camu N; Van Vooren T; Heymans C; De Vuyst L
    Int J Food Microbiol; 2008 May; 124(1):27-33. PubMed ID: 18396344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.