These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 8810099)
1. Ca2+ uptake coupled to glycogen phosphorolysis in the glycogenolytic-sarcoplasmic reticulum complex from rat skeletal muscle. Nogues M; Cuenda A; Henao F; Gutiérrez-Merino C Z Naturforsch C J Biosci; 1996; 51(7-8):591-8. PubMed ID: 8810099 [TBL] [Abstract][Full Text] [Related]
2. Glycogen phosphorolysis can form a metabolic shuttle to support Ca2+ uptake by sarcoplasmic reticulum membranes in skeletal muscle. Cuenda A; Nogues M; Gutiérrez-Merino C; de Meis L Biochem Biophys Res Commun; 1993 Nov; 196(3):1127-32. PubMed ID: 8250871 [TBL] [Abstract][Full Text] [Related]
3. The content of glycogen phosphorylase and glycogen in preparations of sarcoplasmic reticulum-glycogenolytic complex is enhanced in diabetic rat skeletal muscle. Garduño E; Nogues M; Merino JM; Gutiérrez-Merino C; Henao F Diabetologia; 2001 Oct; 44(10):1238-46. PubMed ID: 11692172 [TBL] [Abstract][Full Text] [Related]
4. Skeletal muscle sarcoplasmic reticulum glycogen status influences Ca2+ uptake supported by endogenously synthesized ATP. Lees SJ; Williams JH Am J Physiol Cell Physiol; 2004 Jan; 286(1):C97-104. PubMed ID: 12967914 [TBL] [Abstract][Full Text] [Related]
5. The sarcoplasmic reticulum-glycogenolytic complex in mammalian fast twitch skeletal muscle. Proposed in vitro counterpart of the contraction-activated glycogenolytic pool. Entman ML; Keslensky SS; Chu A; Van Winkle WB J Biol Chem; 1980 Jul; 255(13):6245-52. PubMed ID: 6446555 [TBL] [Abstract][Full Text] [Related]
6. Modulation by phosphorylation of glycogen phosphorylase-sarcoplasmic reticulum interaction. Cuenda A; Centeno F; Gutierrez-Merino C FEBS Lett; 1991 Jun; 283(2):273-6. PubMed ID: 1828440 [TBL] [Abstract][Full Text] [Related]
7. Association of gylcogenolysis with cardiac sarcoplasmic reticulum. Entam ML; Kanike K; Goldstein MA; Nelson TE; Bornet EP; Futch TW; Schwartz A J Biol Chem; 1976 May; 251(10):3140-6. PubMed ID: 5455 [TBL] [Abstract][Full Text] [Related]
8. Failure of short term stimulation to reduce sarcoplasmic reticulum Ca(2+)-ATPase function in homogenates of rat gastrocnemius. Dossett-Mercer J; Green H; Chin ER; Grange F Mol Cell Biochem; 1995 May; 146(1):23-33. PubMed ID: 7651373 [TBL] [Abstract][Full Text] [Related]
9. The cardiac sarcoplasmic reticulum-glycogenolytic complex. A possible effector site for cyclic AMP. Entman ML; Bornet EP; Barber AJ; Schwartz A; Levey GS; Lehotay DC; Bricker LA Biochim Biophys Acta; 1977 Sep; 499(2):228-37. PubMed ID: 198010 [TBL] [Abstract][Full Text] [Related]
10. Characterization of sarcolemma and sarcoplasmic reticulum isolated from skeletal muscle of the freeze tolerant wood frog, Rana sylvatica: the beta(2)-adrenergic receptor and calcium transport systems in control, frozen and thawed states. Hemmings SJ; Storey KB Cell Biochem Funct; 2001 Jun; 19(2):143-52. PubMed ID: 11335939 [TBL] [Abstract][Full Text] [Related]
11. [In vitro formation of glycogenolytic enzyme complexes with the sarcoplasmic reticulum in the skeletal muscles of skates and the frog]. Serebrenikova TP; Shmelev VK Zh Evol Biokhim Fiziol; 1986; 22(2):196-200. PubMed ID: 2940777 [TBL] [Abstract][Full Text] [Related]
12. Manipulation of dietary carbohydrates after prolonged effort modifies muscle sarcoplasmic reticulum responses in exercising males. Duhamel TA; Perco JG; Green HJ Am J Physiol Regul Integr Comp Physiol; 2006 Oct; 291(4):R1100-10. PubMed ID: 16690765 [TBL] [Abstract][Full Text] [Related]
13. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum? Smith GA; Vandenberg JI; Freestone NS; Dixon HB Biochem J; 2001 Mar; 354(Pt 3):539-51. PubMed ID: 11237858 [TBL] [Abstract][Full Text] [Related]
14. Glucose 6-phosphate and hexokinase can be used as an ATP-regenerating system by the Ca(2+)-ATPase of sarcoplasmic reticulum. Montero-Lomelí M; de Meis L J Biol Chem; 1992 Jan; 267(3):1829-33. PubMed ID: 1309800 [TBL] [Abstract][Full Text] [Related]
15. Functional compartmentation of glycogen phosphorylase with creatine kinase and Ca2+ ATPase in skeletal muscle. Field ML; Khan O; Abbaraju J; Clark JF J Theor Biol; 2006 Jan; 238(2):257-68. PubMed ID: 16005021 [TBL] [Abstract][Full Text] [Related]
16. The slippage of the Ca2+ pump and its control by anions and curcumin in skeletal and cardiac sarcoplasmic reticulum. Sumbilla C; Lewis D; Hammerschmidt T; Inesi G J Biol Chem; 2002 Apr; 277(16):13900-6. PubMed ID: 11844792 [TBL] [Abstract][Full Text] [Related]
17. (Ca2+ + Mg2+)-ATPase activity associated with the maintenance of a Ca2+ gradient by sarcoplasmic reticulum at submicromolar external [Ca2+]. The effect of hypothyroidism. Simonides WS; Van Hardeveld C Biochim Biophys Acta; 1988 Aug; 943(2):349-59. PubMed ID: 2456786 [TBL] [Abstract][Full Text] [Related]
18. Interaction between glycogen phosphorylase and sarcoplasmic reticulum membranes and its functional implications. Cuenda A; Nogues M; Henao F; Gutiérrez-Merino C J Biol Chem; 1995 May; 270(20):11998-2004. PubMed ID: 7744850 [TBL] [Abstract][Full Text] [Related]
19. Calcium pool size modulates the sensitivity of the ryanodine receptor channel and calcium-dependent ATPase of heavy sarcoplasmic reticulum to extravesicular free calcium concentration. Marie V; Silva JE J Cell Physiol; 1998 Jun; 175(3):283-94. PubMed ID: 9572473 [TBL] [Abstract][Full Text] [Related]
20. Mg2+ and ATP effects on K+ activation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum. Jones LR Biochim Biophys Acta; 1979 Oct; 557(1):230-42. PubMed ID: 162038 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]