BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 8810231)

  • 1. [Physiological roles of rhodopsin phosphorylation and dephosphorylation and its relationship with retinitis pigmentosa].
    Oguro H
    Nippon Ganka Gakkai Zasshi; 1996 Aug; 100(8):575-81. PubMed ID: 8810231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A null mutation in the rhodopsin gene causes rod photoreceptor dysfunction and autosomal recessive retinitis pigmentosa.
    Rosenfeld PJ; Cowley GS; McGee TL; Sandberg MA; Berson EL; Dryja TP
    Nat Genet; 1992 Jun; 1(3):209-13. PubMed ID: 1303237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa.
    Dryja TP; McGee TL; Reichel E; Hahn LB; Cowley GS; Yandell DW; Sandberg MA; Berson EL
    Nature; 1990 Jan; 343(6256):364-6. PubMed ID: 2137202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+/recoverin dependent regulation of phosphorylation of the rhodopsin mutant R135L associated with retinitis pigmentosa.
    Senin II; Bosch L; Ramon E; Zernii EY; Manyosa J; Philippov PP; Garriga P
    Biochem Biophys Res Commun; 2006 Oct; 349(1):345-52. PubMed ID: 16934219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin.
    Kühn H; Hall SW; Wilden U
    FEBS Lett; 1984 Oct; 176(2):473-8. PubMed ID: 6436059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [New drug therapy for retinal degeneration].
    Ohguro H
    Nippon Ganka Gakkai Zasshi; 2008 Jan; 112(1):7-21. PubMed ID: 18240599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abnormal activation and inactivation mechanisms of rod transduction in patients with autosomal dominant retinitis pigmentosa and the pro-23-his mutation.
    Birch DG; Hood DC; Nusinowitz S; Pepperberg DR
    Invest Ophthalmol Vis Sci; 1995 Jul; 36(8):1603-14. PubMed ID: 7601641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP-independent deactivation of squid rhodopsin.
    Kahana A; Robinson PR; Lewis LJ; Szuts EZ; Lisman JE
    Vis Neurosci; 1992 Dec; 9(6):595-602. PubMed ID: 1450111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and mechanisms of function of visual system proteins.
    Lipkin VM; Obukhov AN
    Membr Cell Biol; 2000; 13(2):165-93. PubMed ID: 10779170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodopsin arginine-135 mutants are phosphorylated by rhodopsin kinase and bind arrestin in the absence of 11-cis-retinal.
    Shi W; Sports CD; Raman D; Shirakawa S; Osawa S; Weiss ER
    Biochemistry; 1998 Apr; 37(14):4869-74. PubMed ID: 9538004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of rhodopsin, G-protein and kinase in octopus photoreceptors.
    Tsuda M; Hirata H; Tsuda T
    Photochem Photobiol; 1992 Dec; 56(6):1167-72. PubMed ID: 1492131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutive activation of opsin: interaction of mutants with rhodopsin kinase and arrestin.
    Rim J; Oprian DD
    Biochemistry; 1995 Sep; 34(37):11938-45. PubMed ID: 7547930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of a novel retinylamine analog inhibitor of constitutively active rhodopsin mutants found in patients with autosomal dominant retinitis pigmentosa.
    Yang T; Snider BB; Oprian DD
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13559-64. PubMed ID: 9391065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights from a lost visual pigment.
    Travis GH
    Nat Genet; 1997 Feb; 15(2):115-7. PubMed ID: 9020830
    [No Abstract]   [Full Text] [Related]  

  • 15. Identification of a single phosphorylation site within octopus rhodopsin.
    Ohguro H; Yoshida N; Shindou H; Crabb JW; Palczewski K; Tsuda M
    Photochem Photobiol; 1998 Dec; 68(6):824-8. PubMed ID: 9867032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low incidence of retinitis pigmentosa among heterozygous carriers of a specific rhodopsin splice site mutation.
    Rosenfeld PJ; Hahn LB; Sandberg MA; Dryja TP; Berson EL
    Invest Ophthalmol Vis Sci; 1995 Oct; 36(11):2186-92. PubMed ID: 7558711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium regulates the rate of rhodopsin disactivation and the primary amplification step in visual transduction.
    Wagner R; Ryba N; Uhl R
    FEBS Lett; 1989 Jan; 242(2):249-54. PubMed ID: 2914607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the rhodopsin kinase gene in patients with retinitis pigmentosa.
    Yamamoto S; Khani SC; Berson EL; Dryja TP
    Exp Eye Res; 1997 Aug; 65(2):249-53. PubMed ID: 9268593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic GMP cascade of vision.
    Stryer L
    Annu Rev Neurosci; 1986; 9():87-119. PubMed ID: 2423011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel mechanism for the activation of rhodopsin kinase: implications for other G protein-coupled receptor kinases (GRK's).
    Dean KR; Akhtar M
    Biochemistry; 1996 May; 35(19):6164-72. PubMed ID: 8634260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.