These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 8810258)

  • 1. Nucleotides reveal polynucleotide phosphorylase activity from conventionally purified GroEL.
    Ybarra J; Horowitz PM
    J Biol Chem; 1996 Oct; 271(41):25063-6. PubMed ID: 8810258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A monomeric variant of GroEL binds nucleotides but is inactive as a molecular chaperone.
    White ZW; Fisher KE; Eisenstein E
    J Biol Chem; 1995 Sep; 270(35):20404-9. PubMed ID: 7657615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A conserved loop in polynucleotide phosphorylase (PNPase) essential for both RNA and ADP/phosphate binding.
    Carzaniga T; Mazzantini E; Nardini M; Regonesi ME; Greco C; Briani F; De Gioia L; Dehò G; Tortora P
    Biochimie; 2014 Feb; 97():49-59. PubMed ID: 24075876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polynucleotide phosphorylase and mitochondrial ATP synthase mediate reduction of arsenate to the more toxic arsenite by forming arsenylated analogues of ADP and ATP.
    Németi B; Regonesi ME; Tortora P; Gregus Z
    Toxicol Sci; 2010 Oct; 117(2):270-81. PubMed ID: 20457661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A kinetic analysis of the nucleotide-induced allosteric transitions of GroEL.
    Cliff MJ; Kad NM; Hay N; Lund PA; Webb MR; Burston SG; Clarke AR
    J Mol Biol; 1999 Oct; 293(3):667-84. PubMed ID: 10543958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactive GroEL monomers can be isolated and reassembled to functional tetradecamers that contain few bound peptides.
    Ybarra J; Horowitz PM
    J Biol Chem; 1995 Sep; 270(39):22962-7. PubMed ID: 7559433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloroplast PNPase exists as a homo-multimer enzyme complex that is distinct from the Escherichia coli degradosome.
    Baginsky S; Shteiman-Kotler A; Liveanu V; Yehudai-Resheff S; Bellaoui M; Settlage RE; Shabanowitz J; Hunt DF; Schuster G; Gruissem W
    RNA; 2001 Oct; 7(10):1464-75. PubMed ID: 11680851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetry, commitment and inhibition in the GroE ATPase cycle impose alternating functions on the two GroEL rings.
    Kad NM; Ranson NA; Cliff MJ; Clarke AR
    J Mol Biol; 1998 Apr; 278(1):267-78. PubMed ID: 9571049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide-dependent complex formation between the Escherichia coli chaperonins GroEL and GroES studied under equilibrium conditions.
    Behlke J; Ristau O; Schönfeld HJ
    Biochemistry; 1997 Apr; 36(17):5149-56. PubMed ID: 9136876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic activities in thylakoid membranes, which form medium [32P]NDP and [32P]ATP from 32Pi. Polynucleotide phosphorylase and adenylate kinase.
    Feldman RI; Sigman DS
    Eur J Biochem; 1984 Sep; 143(3):583-8. PubMed ID: 6090133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The allosteric transition of GroEL induced by metal fluoride-ADP complexes.
    Inobe T; Kikushima K; Makio T; Arai M; Kuwajima K
    J Mol Biol; 2003 May; 329(1):121-34. PubMed ID: 12742022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding.
    Martin J; Mayhew M; Langer T; Hartl FU
    Nature; 1993 Nov; 366(6452):228-33. PubMed ID: 7901770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conditions for nucleotide-dependent GroES-GroEL interactions. GroEL14(groES7)2 is favored by an asymmetric distribution of nucleotides.
    Gorovits BM; Ybarra J; Seale JW; Horowitz PM
    J Biol Chem; 1997 Oct; 272(43):26999-7004. PubMed ID: 9341138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of groES on the groEL-dependent assembly of dodecameric glutamine synthetase in the presence of ATP and ADP.
    Fisher MT
    J Biol Chem; 1994 May; 269(18):13629-36. PubMed ID: 7909810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The affinity of the GroEL/GroES complex for peptides under conditions of protein folding.
    Preuss M; Miller AD
    FEBS Lett; 2000 Jan; 466(1):75-9. PubMed ID: 10648816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polynucleotide synthetase of E. coli: an enzyme complex having polynucleotide phosphorylase as apoenzyme.
    Stavrianopoulos JG; Chargaff E
    Biochim Biophys Acta; 1981 Oct; 655(3):307-22. PubMed ID: 7025911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaperonin-mediated folding of green fluorescent protein.
    Makino Y; Amada K; Taguchi H; Yoshida M
    J Biol Chem; 1997 May; 272(19):12468-74. PubMed ID: 9139695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polynucleotide phosphorylase functions as both an exonuclease and a poly(A) polymerase in spinach chloroplasts.
    Yehudai-Resheff S; Hirsh M; Schuster G
    Mol Cell Biol; 2001 Aug; 21(16):5408-16. PubMed ID: 11463823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of the polynucleotide phosphorylase-catalyzed arsenolysis of ADP.
    Németi B; Regonesi ME; Tortora P; Gregus Z
    Biochimie; 2011 Mar; 93(3):624-7. PubMed ID: 21130834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polynucleotide phosphorylase-based photometric assay for inorganic phosphate.
    Ghetta A; Matus-Ortega M; García-Mena J; Dehò G; Tortora P; Regonesi ME
    Anal Biochem; 2004 Apr; 327(2):209-14. PubMed ID: 15051537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.