These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 8810273)

  • 21. Clustered amino acid substitutions in the yeast transcription regulator Pdr3p increase pleiotropic drug resistance and identify a new central regulatory domain.
    Nourani A; Papajova D; Delahodde A; Jacq C; Subik J
    Mol Gen Genet; 1997 Oct; 256(4):397-405. PubMed ID: 9393437
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The ABC transporter Pdr5p mediates the efflux of nonsteroidal ecdysone agonists in Saccharomyces cerevisiae.
    Hu W; Feng Q; Palli SR; Krell PJ; Arif BM; Retnakaran A
    Eur J Biochem; 2001 Jun; 268(12):3416-22. PubMed ID: 11422371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The transporters Pdr5p and Snq2p mediate diazaborine resistance and are under the control of the gain-of-function allele PDR1-12.
    Wehrschütz-Sigl E; Jungwirth H; Bergler H; Högenauer G
    Eur J Biochem; 2004 Mar; 271(6):1145-52. PubMed ID: 15009193
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple Pdr1p/Pdr3p binding sites are essential for normal expression of the ATP binding cassette transporter protein-encoding gene PDR5.
    Katzmann DJ; Hallstrom TC; Mahé Y; Moye-Rowley WS
    J Biol Chem; 1996 Sep; 271(38):23049-54. PubMed ID: 8798494
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel screening for inhibitors of a pleiotropic drug resistant pump, Pdr5, in Saccharomyces cerevisiae.
    Hiraga K; Wanigasekera A; Sugi H; Hamanaka N; Oda K
    Biosci Biotechnol Biochem; 2001 Jul; 65(7):1589-95. PubMed ID: 11515543
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo characterization of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network.
    Kolaczkowski M; Kolaczowska A; Luczynski J; Witek S; Goffeau A
    Microb Drug Resist; 1998; 4(3):143-58. PubMed ID: 9818966
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The involvement of the Saccharomyces cerevisiae multidrug resistance transporters Pdr5p and Snq2p in cation resistance.
    Miyahara K; Mizunuma M; Hirata D; Tsuchiya E; Miyakawa T
    FEBS Lett; 1996 Dec; 399(3):317-20. PubMed ID: 8985171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Compensatory activation of the multidrug transporters Pdr5p, Snq2p, and Yor1p by Pdr1p in Saccharomyces cerevisiae.
    Kolaczkowska A; Kolaczkowski M; Goffeau A; Moye-Rowley WS
    FEBS Lett; 2008 Mar; 582(6):977-83. PubMed ID: 18307995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Endocytosis and vacuolar degradation of the plasma membrane-localized Pdr5 ATP-binding cassette multidrug transporter in Saccharomyces cerevisiae.
    Egner R; Mahé Y; Pandjaitan R; Kuchler K
    Mol Cell Biol; 1995 Nov; 15(11):5879-87. PubMed ID: 7565740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Saccharomyces cerevisiae resistance to chlorinated phenoxyacetic acid herbicides involves Pdr1p-mediated transcriptional activation of TPO1 and PDR5 genes.
    Teixeira MC; Sá-Correia I
    Biochem Biophys Res Commun; 2002 Mar; 292(2):530-7. PubMed ID: 11906193
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solubilization and characterization of the overexpressed PDR5 multidrug resistance nucleotide triphosphatase of yeast.
    Decottignies A; Kolaczkowski M; Balzi E; Goffeau A
    J Biol Chem; 1994 Apr; 269(17):12797-803. PubMed ID: 8175692
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the Efflux Capability and Substrate Specificity of Aspergillus fumigatus PDR5-like ABC Transporters Expressed in Saccharomyces cerevisiae.
    Esquivel BD; Rybak JM; Barker KS; Fortwendel JR; Rogers PD; White TC
    mBio; 2020 Mar; 11(2):. PubMed ID: 32209680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of second-site mutations that suppress the multiple drug resistance phenotype of the yeast PDR1-7 allele.
    McGuire TM; Carvajal E; Katzmann D; Wagner M; Moye-Rowley WS; Goffeau A; Golin J
    Gene; 1995 Dec; 167(1-2):151-5. PubMed ID: 8566768
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation of a putative Candida albicans transcriptional regulator involved in pleiotropic drug resistance by functional complementation of a pdr1 pdr3 mutation in Saccharomyces cerevisiae.
    Talibi D; Raymond M
    J Bacteriol; 1999 Jan; 181(1):231-40. PubMed ID: 9864335
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the mechanism of constitutive Pdr1 activator-mediated PDR5 transcription in Saccharomyces cerevisiae: evidence for enhanced recruitment of coactivators and altered nucleosome structures.
    Gao C; Wang L; Milgrom E; Shen WC
    J Biol Chem; 2004 Oct; 279(41):42677-86. PubMed ID: 15294907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of PDR13 in tolerance to high copper stress in budding yeast.
    Kim DY; Song WY; Yang YY; Lee Y
    FEBS Lett; 2001 Nov; 508(1):99-102. PubMed ID: 11707276
    [TBL] [Abstract][Full Text] [Related]  

  • 37. yAP-1- and yAP-2-mediated, heat shock-induced transcriptional activation of the multidrug resistance ABC transporter genes in Saccharomyces cerevisiae.
    Miyahara K; Hirata D; Miyakawa T
    Curr Genet; 1996 Jan; 29(2):103-5. PubMed ID: 8821655
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New regulators of drug sensitivity in the family of yeast zinc cluster proteins.
    Akache B; Turcotte B
    J Biol Chem; 2002 Jun; 277(24):21254-60. PubMed ID: 11943786
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RPD3 and ROM2 are required for multidrug resistance in Saccharomyces cerevisiae.
    Borecka-Melkusova S; Kozovska Z; Hikkel I; Dzugasova V; Subik J
    FEMS Yeast Res; 2008 May; 8(3):414-24. PubMed ID: 18205807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cigarette smoke condensate alters Saccharomyces cerevisiae efflux transporter mRNA and activity and increases caffeine toxicity.
    Sayyed K; Le Vée M; Chamieh H; Fardel O; Abdel-Razzak Z
    Toxicology; 2018 Nov; 409():129-136. PubMed ID: 30118793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.