These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 8810301)
1. A partially functional DNA helicase II mutant defective in forming stable binary complexes with ATP and DNA. A role for helicase motif III. Brosh RM; Matson SW J Biol Chem; 1996 Oct; 271(41):25360-8. PubMed ID: 8810301 [TBL] [Abstract][Full Text] [Related]
2. Mutations in motif II of Escherichia coli DNA helicase II render the enzyme nonfunctional in both mismatch repair and excision repair with differential effects on the unwinding reaction. Brosh RM; Matson SW J Bacteriol; 1995 Oct; 177(19):5612-21. PubMed ID: 7559350 [TBL] [Abstract][Full Text] [Related]
3. Mutation of a highly conserved arginine in motif IV of Escherichia coli DNA helicase II results in an ATP-binding defect. Hall MC; Matson SW J Biol Chem; 1997 Jul; 272(30):18614-20. PubMed ID: 9228029 [TBL] [Abstract][Full Text] [Related]
4. Site-directed mutations in motif VI of Escherichia coli DNA helicase II result in multiple biochemical defects: evidence for the involvement of motif VI in the coupling of ATPase and DNA binding activities via conformational changes. Hall MC; Ozsoy AZ; Matson SW J Mol Biol; 1998 Mar; 277(2):257-71. PubMed ID: 9514760 [TBL] [Abstract][Full Text] [Related]
5. A region near the C-terminal end of Escherichia coli DNA helicase II is required for single-stranded DNA binding. Mechanic LE; Latta ME; Matson SW J Bacteriol; 1999 Apr; 181(8):2519-26. PubMed ID: 10198018 [TBL] [Abstract][Full Text] [Related]
6. An oligomeric form of E. coli UvrD is required for optimal helicase activity. Ali JA; Maluf NK; Lohman TM J Mol Biol; 1999 Nov; 293(4):815-34. PubMed ID: 10543970 [TBL] [Abstract][Full Text] [Related]
7. A dominant negative allele of the Escherichia coli uvrD gene encoding DNA helicase II. A biochemical and genetic characterization. George JW; Brosh RM; Matson SW J Mol Biol; 1994 Jan; 235(2):424-35. PubMed ID: 8289272 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of DnaB helicase of Escherichia coli: structural domains involved in ATP hydrolysis, DNA binding, and oligomerization. Biswas EE; Biswas SB Biochemistry; 1999 Aug; 38(34):10919-28. PubMed ID: 10460147 [TBL] [Abstract][Full Text] [Related]
9. A Dimer of Escherichia coli UvrD is the active form of the helicase in vitro. Maluf NK; Fischer CJ; Lohman TM J Mol Biol; 2003 Jan; 325(5):913-35. PubMed ID: 12527299 [TBL] [Abstract][Full Text] [Related]
10. Mutational analysis of Mycobacterium UvrD1 identifies functional groups required for ATP hydrolysis, DNA unwinding, and chemomechanical coupling. Sinha KM; Glickman MS; Shuman S Biochemistry; 2009 May; 48(19):4019-30. PubMed ID: 19317511 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of DNA binding by the DnaB helicase of Escherichia coli: analysis of the roles of domain gamma in DNA binding. Biswas EE; Biswas SB Biochemistry; 1999 Aug; 38(34):10929-39. PubMed ID: 10460148 [TBL] [Abstract][Full Text] [Related]
12. Characterization and mutational analysis of the RecQ core of the bloom syndrome protein. Janscak P; Garcia PL; Hamburger F; Makuta Y; Shiraishi K; Imai Y; Ikeda H; Bickle TA J Mol Biol; 2003 Jun; 330(1):29-42. PubMed ID: 12818200 [TBL] [Abstract][Full Text] [Related]
13. Helicase-defective RuvB(D113E) promotes RuvAB-mediated branch migration in vitro. George H; Mézard C; Stasiak A; West SC J Mol Biol; 1999 Oct; 293(3):505-19. PubMed ID: 10543946 [TBL] [Abstract][Full Text] [Related]
14. The Escherichia coli RecQ helicase functions as a monomer. Xu HQ; Deprez E; Zhang AH; Tauc P; Ladjimi MM; Brochon JC; Auclair C; Xi XG J Biol Chem; 2003 Sep; 278(37):34925-33. PubMed ID: 12805371 [TBL] [Abstract][Full Text] [Related]
15. DNA helicase II of Escherichia coli. Characterization of the single-stranded DNA-dependent NTPase and helicase activities. Matson SW; George JW J Biol Chem; 1987 Feb; 262(5):2066-76. PubMed ID: 3029063 [TBL] [Abstract][Full Text] [Related]
16. Study of the ATP-binding site of helicase IV from Escherichia coli. Dubaele S; Lourdel C; Chène P Biochem Biophys Res Commun; 2006 Mar; 341(3):828-36. PubMed ID: 16442499 [TBL] [Abstract][Full Text] [Related]
17. Characterization of DNA helicase II from a uvrD252 mutant of Escherichia coli. Washburn BK; Kushner SR J Bacteriol; 1993 Jan; 175(2):341-50. PubMed ID: 8419285 [TBL] [Abstract][Full Text] [Related]
18. Escherichia coli helicase II (uvrD) protein can completely unwind fully duplex linear and nicked circular DNA. Runyon GT; Lohman TM J Biol Chem; 1989 Oct; 264(29):17502-12. PubMed ID: 2529260 [TBL] [Abstract][Full Text] [Related]
19. Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the Upf1 protein. Weng Y; Czaplinski K; Peltz SW Mol Cell Biol; 1996 Oct; 16(10):5477-90. PubMed ID: 8816461 [TBL] [Abstract][Full Text] [Related]
20. Characterization of a potential catalytic residue, Asp-133, in the high affinity ATP-binding site of Escherichia coli SecA, translocation ATPase. Sato K; Mori H; Yoshida M; Mizushima S J Biol Chem; 1996 Jul; 271(29):17439-44. PubMed ID: 8663354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]