BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 8810335)

  • 1. Mechanism responsible for oligomycin-induced occlusion of Na+ within Na/K-ATPase.
    Arato-Oshima T; Matsui H; Wakizaka A; Homareda H
    J Biol Chem; 1996 Oct; 271(41):25604-10. PubMed ID: 8810335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding domain of oligomycin on Na(+),K(+)-ATPase.
    Homareda H; Ishii T; Takeyasu K
    Eur J Pharmacol; 2000 Jul; 400(2-3):177-83. PubMed ID: 10988331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of sodium and potassium ions with Na+,K+-ATPase. I. Ouabain-sensitive alternative binding of three Na+ or two K+ to the enzyme.
    Matsui H; Homareda H
    J Biochem; 1982 Jul; 92(1):193-217. PubMed ID: 6288671
    [No Abstract]   [Full Text] [Related]  

  • 4. Steady-state levels of phosphorylated intermediates of (Na,K)-ATPase monitored with oligomycin and anthroylouabain.
    Fortes PA; Lee JA
    J Biol Chem; 1984 Sep; 259(18):11176-9. PubMed ID: 6088533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of p-nitrophenylphosphatase activity of Na+/K+-ATPase by NaCl with oligomycin or ATP.
    Homareda H; Ushimaru M
    FEBS J; 2005 Feb; 272(3):673-84. PubMed ID: 15670149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of Rb+ and Na+ occlusion on (Na+,K+)-ATPase by modification of carboxyl groups.
    Shani-Sekler M; Goldshleger R; Tal DM; Karlish SJ
    J Biol Chem; 1988 Dec; 263(36):19331-41. PubMed ID: 2848822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of ouabain-sensitive phosphatase activity in the absence of potassium ion in purified pig kidney Na,K-ATPase.
    Nagamune H; Urayama O; Hara Y; Nakao M
    J Biochem; 1986 Jun; 99(6):1613-24. PubMed ID: 3017924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occlusion of Na+ by the Na,K-ATPase in the presence of oligomycin.
    Esmann M; Skou JC
    Biochem Biophys Res Commun; 1985 Mar; 127(3):857-63. PubMed ID: 2985062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of sodium and potassium ions with Na+,K+-ATPase. II. General properties of ouabain-sensitive K+ binding.
    Homareda H; Matsui H
    J Biochem; 1982 Jul; 92(1):219-31. PubMed ID: 6288672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for essential carboxyls in the cation-binding domain of the Na,K-ATPase.
    Arguello JM; Kaplan JH
    J Biol Chem; 1991 Aug; 266(22):14627-35. PubMed ID: 1650364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The non-gastric H,K-ATPase is oligomycin-sensitive and can function as an H+,NH4(+)-ATPase.
    Swarts HG; Koenderink JB; Willems PH; De Pont JJ
    J Biol Chem; 2005 Sep; 280(39):33115-22. PubMed ID: 16046397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of oligomycin-induced occlusion of Na+ by detergent-solubilized Na,K-ATPase from pig kidney or shark rectal gland.
    Esmann M
    Biochim Biophys Acta; 1992 Apr; 1106(1):1-12. PubMed ID: 1316160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Similarities and differences between the properties of native and recombinant Na+/K+-ATPases.
    Xie Z; Wang Y; Liu G; Zolotarjova N; Periyasamy SM; Askari A
    Arch Biochem Biophys; 1996 Jun; 330(1):153-62. PubMed ID: 8651690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue- and isoform-specific kinetic behavior of the Na,K-ATPase.
    Munzer JS; Daly SE; Jewell-Motz EA; Lingrel JB; Blostein R
    J Biol Chem; 1994 Jun; 269(24):16668-76. PubMed ID: 8206986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational change accompanying formation of oligomycin-induced Na(+)-bound forms and their conversion to ADP-sensitive phosphoenzymes in Na+,K(+)-ATPase.
    Taniguchi K; Sasaki T; Shinoguchi E; Kamo Y; Ito E
    J Biochem; 1991 Feb; 109(2):299-306. PubMed ID: 1650775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of sodium and potassium ions with Na+, K+-ATPase. III. Cooperative effect of ATP and Na+ on complete release of K+ from E2K.
    Homareda H; Nozaki T; Matsui H
    J Biochem; 1987 Mar; 101(3):789-93. PubMed ID: 3036790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive rubidium fluxes mediated by Na-K-ATPase reconstituted into phospholipid vesicles when ATP- and phosphate-free.
    Karlish SJ; Stein WD
    J Physiol; 1982 Jul; 328():295-316. PubMed ID: 6290646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ouabain-binding and phosphorylation of (Na+ + K+) ATPase treated with N-ethylmaleimide or oligomycin.
    Hegyvary C
    Biochim Biophys Acta; 1976 Feb; 422(2):365-79. PubMed ID: 129164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of the (Na+ + k+)-atpase to state-dependent inhibitors. Effects of digitonin and Triton X-100.
    Robinson JD
    Biochim Biophys Acta; 1980 Jun; 598(3):543-53. PubMed ID: 6248111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of the E1ATP binding site of Na+/K(+)-ATPase by the chromium complex of adenosine 5'-[beta,gamma-methylene]triphosphate blocks the overall reaction but not the partial activities of the E2 conformation.
    Hamer E; Schoner W
    Eur J Biochem; 1993 Apr; 213(2):743-8. PubMed ID: 8386635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.