These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 8810336)
1. Allosteric activation of L-lactate dehydrogenase analyzed by hybrid enzymes with effector-sensitive and -insensitive subunits. Fushinobu S; Kamata K; Iwata S; Sakai H; Ohta T; Matsuzawa H J Biol Chem; 1996 Oct; 271(41):25611-6. PubMed ID: 8810336 [TBL] [Abstract][Full Text] [Related]
2. Molecular basis of allosteric activation of bacterial L-lactate dehydrogenase. Iwata S; Ohta T J Mol Biol; 1993 Mar; 230(1):21-7. PubMed ID: 8450537 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of allosteric transition of bacterial L-lactate dehydrogenase. Ohta T; Yokota K; Minowa T; Iwata S Faraday Discuss; 1992; (93):153-62. PubMed ID: 1290930 [TBL] [Abstract][Full Text] [Related]
4. T and R states in the crystals of bacterial L-lactate dehydrogenase reveal the mechanism for allosteric control. Iwata S; Kamata K; Yoshida S; Minowa T; Ohta T Nat Struct Biol; 1994 Mar; 1(3):176-85. PubMed ID: 7656036 [TBL] [Abstract][Full Text] [Related]
5. Homotropic activation via the subunit interaction and allosteric symmetry revealed on analysis of hybrid enzymes of L-lactate dehydrogenase. Fushinobu S; Ohta T; Matsuzawa H J Biol Chem; 1998 Jan; 273(5):2971-6. PubMed ID: 9446610 [TBL] [Abstract][Full Text] [Related]
6. The Simple and Unique Allosteric Machinery of Thermus caldophilus Lactate Dehydrogenase : Structure-Function Relationship in Bacterial Allosteric LDHs. Taguchi H Adv Exp Med Biol; 2017; 925():117-145. PubMed ID: 27815924 [TBL] [Abstract][Full Text] [Related]
7. A regular 1:1 complex of two allosteric states in the single crystal of L-lactate dehydrogenase from Bifidobacterium longum. Iwata S; Yoshida S; Ohta T J Mol Biol; 1994 Feb; 236(3):958-9. PubMed ID: 8114106 [TBL] [Abstract][Full Text] [Related]
8. A yeast phosphofructokinase insensitive to the allosteric activator fructose 2,6-bisphosphate. Glycolysis/metabolic regulation/allosteric control. Heinisch JJ; Boles E; Timpel C J Biol Chem; 1996 Jul; 271(27):15928-33. PubMed ID: 8663166 [TBL] [Abstract][Full Text] [Related]
9. Subunit interactions and composition of the fructose 6-phosphate catalytic site and the fructose 2,6-bisphosphate allosteric site of mammalian phosphofructokinase. Ferreras C; Hernández ED; Martínez-Costa OH; Aragón JJ J Biol Chem; 2009 Apr; 284(14):9124-31. PubMed ID: 19218242 [TBL] [Abstract][Full Text] [Related]
10. L-Lactate dehydrogenase from Thermus caldophilus GK24, an extremely thermophilic bacterium. Desensitization to fructose 1,6-bisphosphate in the activated state by arginine-specific chemical modification and the N-terminal amino acid sequence. Taguchi H; Matsuzawa H; Ohta T Eur J Biochem; 1984 Dec; 145(2):283-90. PubMed ID: 6499843 [TBL] [Abstract][Full Text] [Related]
11. Fructose 1,6-bisphosphate-dependent L-lactate dehydrogenase from Thermus aquaticus YT-1, an extreme thermophile: activation by citrate and modification reagents and comparison with Thermus caldophilus GK24 L-lactate dehydrogenase. Machida M; Matsuzawa H; Ohta T J Biochem; 1985 Mar; 97(3):899-909. PubMed ID: 4019440 [TBL] [Abstract][Full Text] [Related]
12. Fructose-1,6-bisphosphatase: arginine-22 is involved in stabilization of the T allosteric state. Lu G; Williams MK; Giroux EL; Kantrowitz ER Biochemistry; 1995 Oct; 34(41):13272-7. PubMed ID: 7577911 [TBL] [Abstract][Full Text] [Related]
13. Sequence and characteristics of the Bifidobacterium longum gene encoding L-lactate dehydrogenase and the primary structure of the enzyme: a new feature of the allosteric site. Minowa T; Iwata S; Sakai H; Masaki H; Ohta T Gene; 1989 Dec; 85(1):161-8. PubMed ID: 2695396 [TBL] [Abstract][Full Text] [Related]
14. A study of subunit interface residues of fructose-1,6-bisphosphatase by site-directed mutagenesis: effects on AMP and Mg2+ affinities. Shyur LF; Aleshin AE; Fromm HJ Biochemistry; 1996 Jun; 35(23):7492-8. PubMed ID: 8652527 [TBL] [Abstract][Full Text] [Related]
15. An absolute requirement of fructose 1,6-bisphosphate for the Lactobacillus casei L-lactate dehydrogenase activity induced by a single amino acid substitution. Arai K; Hishida A; Ishiyama M; Kamata T; Uchikoba H; Fushinobu S; Matsuzawa H; Taguchi H Protein Eng; 2002 Jan; 15(1):35-41. PubMed ID: 11842236 [TBL] [Abstract][Full Text] [Related]
16. Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases. Zgiby SM; Thomson GJ; Qamar S; Berry A Eur J Biochem; 2000 Mar; 267(6):1858-68. PubMed ID: 10712619 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products. Shirakihara Y; Evans PR J Mol Biol; 1988 Dec; 204(4):973-94. PubMed ID: 2975709 [TBL] [Abstract][Full Text] [Related]
18. Allosteric activation in Bacillus stearothermophilus lactate dehydrogenase investigated by an X-ray crystallographic analysis of a mutant designed to prevent tetramerization of the enzyme. Cameron AD; Roper DI; Moreton KM; Muirhead H; Holbrook JJ; Wigley DB J Mol Biol; 1994 May; 238(4):615-25. PubMed ID: 8176749 [TBL] [Abstract][Full Text] [Related]
19. Allosteric effect of fructose 1,6-bisphosphate on the conformation of NAD+ as bound to L-lactate dehydrogenase from Thermus caldophilus GK24. Machida M; Yokoyama S; Matsuzawa H; Miyazawa T; Ohta T J Biol Chem; 1985 Dec; 260(30):16143-7. PubMed ID: 4066707 [TBL] [Abstract][Full Text] [Related]
20. Structure and function of L-lactate dehydrogenases from thermophilic and mesophilic bacteria, X. Analysis of structural elements responsible for the differences in thermostability and activation by fructose 1,6-bisphosphate in the lactate dehydrogenases from B. stearothermophilus and B. caldolyticus by protein engineering. Zülli F; Weber H; Zuber H Biol Chem Hoppe Seyler; 1990 Aug; 371(8):655-62. PubMed ID: 2206453 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]