These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 8810539)
1. Chlorpromazine, a candidate drug for photopheresis. van Iperen HP; Beijersbergen van Henegouwen MJ J Photochem Photobiol B; 1996 Jul; 34(2-3):217-24. PubMed ID: 8810539 [TBL] [Abstract][Full Text] [Related]
2. Photopheresis; the risk of photoallergy. van Iperen HP; Beijersbergen van Henegouwen GM J Photochem Photobiol B; 1996 Jul; 34(2-3):225-8. PubMed ID: 8810540 [TBL] [Abstract][Full Text] [Related]
3. An animal model and new photosensitizers for photopheresis. van Iperen HP; Beijersbergen van Henegouwen GM Photochem Photobiol; 1993 Oct; 58(4):571-4. PubMed ID: 8248333 [TBL] [Abstract][Full Text] [Related]
4. The lack of efficacy of 4,6,6'-trimethylangelicin to induce immune suppression in an animal model for photopheresis: a comparison with 8-MOP. van Iperen HP; Brun BM; Caffieri S; Dall'Acqua F; Gasparro FP; Beijersbergen Henegouwen GM Photochem Photobiol; 1996 May; 63(5):577-82. PubMed ID: 8628748 [TBL] [Abstract][Full Text] [Related]
5. Photobinding of 8-methoxypsoralen, 4,6,4'-trimethylangelicin and chlorpromazine to Wistar rat epidermal biomacromolecules in vivo. Schoonderwoerd SA; Beijersbergen van Henegouwen GM; Persons CC; Caffieri S; Dall'Acqua F J Photochem Photobiol B; 1991 Aug; 10(3):257-68. PubMed ID: 1723425 [TBL] [Abstract][Full Text] [Related]
6. Intravenous infusion of syngeneic apoptotic cells by photopheresis induces antigen-specific regulatory T cells. Maeda A; Schwarz A; Kernebeck K; Gross N; Aragane Y; Peritt D; Schwarz T J Immunol; 2005 May; 174(10):5968-76. PubMed ID: 15879089 [TBL] [Abstract][Full Text] [Related]
7. Effect of alpha-tocopherol and di-butyl-hydroxytoluene (BHT) on UV-A-induced photobinding of 8-methoxypsoralen to Wistar rat epidermal biomacromolecules in vivo. Schoonderwoerd SA; Beijersbergen van Henegouwen GM; Persons KC Arch Toxicol; 1991; 65(6):490-4. PubMed ID: 1929870 [TBL] [Abstract][Full Text] [Related]
8. Singlet oxygen producing photosensitizers in photophoresis. van Iperen HP; Beijersbergen van Henegouwen GM J Photochem Photobiol B; 1997 Apr; 38(2-3):203-8. PubMed ID: 9203382 [TBL] [Abstract][Full Text] [Related]
9. Apoptosis induction by extracorporeal photopheresis is enhanced by increasing the 8-methoxypsoralen concentration and by replacing plasma with saline. Hähnel V; Brosig AM; Ehrenschwender M; Burkhardt R; Offner R; Ahrens N Transfusion; 2021 Oct; 61(10):2991-2999. PubMed ID: 34427336 [TBL] [Abstract][Full Text] [Related]
10. Apoptosis in leukocytes induced by UVA in the presence of 8-methoxypsoralen, chlorpromazine or 4,6,4'-trimethylangelicin. Wolnicka-Głubisz A; Rijnkels JM; Sarna T; Beijersbergen van Henegouwen GM J Photochem Photobiol B; 2002 Nov; 68(2-3):65-72. PubMed ID: 12468199 [TBL] [Abstract][Full Text] [Related]
11. Thiols as potential UV radiation protectors: an in vitro study. van den Broeke LT; Beyersbergen van Henegouwen GM J Photochem Photobiol B; 1993 Mar; 17(3):279-86. PubMed ID: 8492245 [TBL] [Abstract][Full Text] [Related]
12. Effect of UVA and 8-methoxypsoralen, 4, 6, 4'-trimethylangelicin or chlorpromazine on apoptosis of lymphocytes and their recognition by monocytes. Wolnicka-Glubisz A; Fraczek J; Skrzeczynska-Moncznik J; Friedlein G; Mikolajczyk T; Sarna T; Pryjma J J Physiol Pharmacol; 2010 Feb; 61(1):107-14. PubMed ID: 20228422 [TBL] [Abstract][Full Text] [Related]
13. Comparison between 8-methoxypsoralen and 5-aminolevulinic acid in killing T cells of photopheresis patients ex vivo. Holien T; Gederaas OA; Darvekar SR; Christensen E; Peng Q Lasers Surg Med; 2018 Jul; 50(5):469-475. PubMed ID: 29460964 [TBL] [Abstract][Full Text] [Related]
14. An animal model for extracorporeal photochemotherapy based on contact hypersensitivity. van Iperen HP; Beijersbergen van Henegouwen GM J Photochem Photobiol B; 1992 Sep; 15(4):361-6. PubMed ID: 1432398 [TBL] [Abstract][Full Text] [Related]
15. Drug monitoring of orally administered 8-methoxypsoralen in patients treated with extracorporeal photopheresis. Balogh A; Merkel U; Looks A; Vollandt R; Wollina U Skin Pharmacol Appl Skin Physiol; 1998; 11(4-5):258-65. PubMed ID: 9885410 [TBL] [Abstract][Full Text] [Related]
16. Matrix-dependent absorption of 8-methoxypsoralen in extracorporeal photopheresis. Hähnel V; Weber I; Tuemmler S; Graf B; Gruber M; Burkhardt R; Ahrens N Photochem Photobiol Sci; 2020 Aug; 19(8):1099-1103. PubMed ID: 32638713 [TBL] [Abstract][Full Text] [Related]
17. UV-radiation protecting efficacy of thiols, studied with UVA-induced binding of 8-MOP and CPZ to rat epidermal biomacromolecules in vivo. van den Broeke LT; Beyersbergen van Henegouwen GM Int J Radiat Biol; 1993 Apr; 63(4):493-500. PubMed ID: 8096862 [TBL] [Abstract][Full Text] [Related]
18. A method for the quantification of 8-methoxypsoralen by mass spectrometry for offline extracorporeal photopheresis. Hähnel V; Dormann F; Nitsopoulos A; Friedle A; Ahrens N Photochem Photobiol Sci; 2017 Feb; 16(2):193-200. PubMed ID: 27976780 [TBL] [Abstract][Full Text] [Related]
19. Plasma and buffy coat concentration of 8-methoxypsoralen in patients treated with extracorporeal photopheresis. Balogh A; Merkel U; Looks A; Vollandt R; Wollina U Exp Toxicol Pathol; 1998 Sep; 50(4-6):397-401. PubMed ID: 9784014 [TBL] [Abstract][Full Text] [Related]
20. Modification of extracorporeal photopheresis technology with porphyrin precursors. Comparison between 8-methoxypsoralen and hexaminolevulinate in killing human T-cell lymphoma cell lines in vitro. Cunderlíková B; Vasovič V; Randeberg LL; Christensen E; Warloe T; Nesland JM; Peng Q Biochim Biophys Acta; 2014 Sep; 1840(9):2702-8. PubMed ID: 24915603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]