BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 8810900)

  • 1. Monovalent cation transport: lack of structural deformation upon cation binding.
    Tian F; Lee KC; Hu W; Cross TA
    Biochemistry; 1996 Sep; 35(37):11959-66. PubMed ID: 8810900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cation binding induced changes in 15N CSA in a membrane-bound polypeptide.
    Tian F; Cross TA
    J Magn Reson; 1998 Dec; 135(2):535-40. PubMed ID: 9878481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cation transport: an example of structural based selectivity.
    Tian F; Cross TA
    J Mol Biol; 1999 Feb; 285(5):1993-2003. PubMed ID: 9925780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlations of structure, dynamics and function in the gramicidin channel by solid-state NMR spectroscopy.
    Cross TA; Tian F; Cotten M; Wang J; Kovacs F; Fu R
    Novartis Found Symp; 1999; 225():4-16; discussion 16-22. PubMed ID: 10472044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cation control in functional helical programming: structures of a D,L-peptide ion channel.
    Arndt HD; Bockelmann D; Knoll A; Lamberth S; Griesinger C; Koert U
    Angew Chem Int Ed Engl; 2002 Nov; 41(21):4062-5. PubMed ID: 12412082
    [No Abstract]   [Full Text] [Related]  

  • 6. Modulating dipoles for structure-function correlations in the gramicidin A channel.
    Cotten M; Tian C; Busath DD; Shirts RB; Cross TA
    Biochemistry; 1999 Jul; 38(29):9185-97. PubMed ID: 10413493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gramicidin D conformation, dynamics and membrane ion transport.
    Burkhart BM; Gassman RM; Langs DA; Pangborn WA; Duax WL; Pletnev V
    Biopolymers; 1999; 51(2):129-44. PubMed ID: 10397797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water accessibility to the tryptophan indole N-H sites of gramicidin A transmembrane channel: detection of positional shifts of tryptophans 11 and 13 along the channel axis upon cation binding.
    Maruyama T; Takeuchi H
    Biochemistry; 1997 Sep; 36(36):10993-1001. PubMed ID: 9283091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the gramicidin/potassium thiocyanate complex.
    Doyle DA; Wallace BA
    J Mol Biol; 1997 Mar; 266(5):963-77. PubMed ID: 9086274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion solvation by channel carbonyls characterized by 17O solid-state NMR at 21 T.
    Hu J; Chekmenev EY; Gan Z; Gor'kov PL; Saha S; Brey WW; Cross TA
    J Am Chem Soc; 2005 Aug; 127(34):11922-3. PubMed ID: 16117514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium ion binding in the gramicidin A channel. Solid-state NMR studies of the tryptophan residues.
    Separovic F; Gehrmann J; Milne T; Cornell BA; Lin SY; Smith R
    Biophys J; 1994 Oct; 67(4):1495-500. PubMed ID: 7529584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The divalent cation-binding sites of gramicidin A transmembrane ion-channel.
    Golovanov AP; Barsukov IL; Arseniev AS; Bystrov VF; Sukhanov SV; Barsukov LI
    Biopolymers; 1991 Mar; 31(4):425-34. PubMed ID: 1713797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exchange of K+ or Cs+ for Na+ induces local and long-range changes in the three-dimensional structure of the tryptophan synthase alpha2beta2 complex.
    Rhee S; Parris KD; Ahmed SA; Miles EW; Davies DR
    Biochemistry; 1996 Apr; 35(13):4211-21. PubMed ID: 8672457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective binding of monovalent cations to the stacking G-quartet structure formed by guanosine 5'-monophosphate: a solid-state NMR study.
    Wong A; Wu G
    J Am Chem Soc; 2003 Nov; 125(45):13895-905. PubMed ID: 14599230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tryptophans in membrane proteins: indole ring orientations and functional implications in the gramicidin channel.
    Hu W; Lee KC; Cross TA
    Biochemistry; 1993 Jul; 32(27):7035-47. PubMed ID: 7687467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of gramicidin D-RbCl complex at atomic resolution from low-temperature synchrotron data: interactions of double-stranded gramicidin channel contents and cations with channel wall.
    Główka ML; Olczak A; Bojarska J; Szczesio M; Duax WL; Burkhart BM; Pangborn WA; Langs DA; Wawrzak Z
    Acta Crystallogr D Biol Crystallogr; 2005 Apr; 61(Pt 4):433-41. PubMed ID: 15805598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial cation-conducting channels: design, synthesis, and characterization.
    Gokel GW
    Cell Biochem Biophys; 2001; 35(3):211-31. PubMed ID: 11894842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformation of the acylation site of palmitoylgramicidin in lipid bilayers of dimyristoylphosphatidylcholine.
    Koeppe RE; Vogt TC; Greathouse DV; Killian JA; de Kruijff B
    Biochemistry; 1996 Mar; 35(11):3641-8. PubMed ID: 8639517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orientational distribution of alpha-helices in the colicin B and E1 channel domains: a one and two dimensional 15N solid-state NMR investigation in uniaxially aligned phospholipid bilayers.
    Lambotte S; Jasperse P; Bechinger B
    Biochemistry; 1998 Jan; 37(1):16-22. PubMed ID: 9453746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structure of a parallel left-handed double-helical gramicidin-A determined by 2D 1H NMR.
    Chen Y; Tucker A; Wallace BA
    J Mol Biol; 1996 Dec; 264(4):757-69. PubMed ID: 8980684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.