BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 8810920)

  • 1. Intersubunit interaction between amino- and carboxyl-terminal cysteine residues in tetrameric shaker K+ channels.
    Schulteis CT; Nagaya N; Papazian DM
    Biochemistry; 1996 Sep; 35(37):12133-40. PubMed ID: 8810920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Depolarization induces intersubunit cross-linking in a S4 cysteine mutant of the Shaker potassium channel.
    Aziz QH; Partridge CJ; Munsey TS; Sivaprasadarao A
    J Biol Chem; 2002 Nov; 277(45):42719-25. PubMed ID: 12196543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved cysteine residues in the shaker K+ channel are not linked by a disulfide bond.
    Schulteis CT; John SA; Huang Y; Tang CY; Papazian DM
    Biochemistry; 1995 Feb; 34(5):1725-33. PubMed ID: 7849032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of an engineered pore cysteine locks a voltage-gated K+ channel in a nonconducting state.
    Zhang HJ; Liu Y; Zühlke RD; Joho RH
    Biophys J; 1996 Dec; 71(6):3083-90. PubMed ID: 8968579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two critical cysteine residues implicated in disulfide bond formation and proper folding of Kir2.1.
    Cho HC; Tsushima RG; Nguyen TT; Guy HR; Backx PH
    Biochemistry; 2000 Apr; 39(16):4649-57. PubMed ID: 10769120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for intersubunit interactions between S4 and S5 transmembrane segments of the Shaker potassium channel.
    Neale EJ; Elliott DJ; Hunter M; Sivaprasadarao A
    J Biol Chem; 2003 Aug; 278(31):29079-85. PubMed ID: 12883074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic distance estimates from disulfides and high-affinity metal-binding sites in a K+ channel pore.
    Krovetz HS; VanDongen HM; VanDongen AM
    Biophys J; 1997 Jan; 72(1):117-26. PubMed ID: 8994597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Residues in a jellyfish shaker-like channel involved in modulation by external potassium.
    Grigoriev NG; Spafford JD; Spencer AN
    J Neurophysiol; 1999 Oct; 82(4):1740-7. PubMed ID: 10515963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subunit folding and assembly steps are interspersed during Shaker potassium channel biogenesis.
    Schulteis CT; Nagaya N; Papazian DM
    J Biol Chem; 1998 Oct; 273(40):26210-7. PubMed ID: 9748304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic proximity between S4 segment and pore domain in Shaker potassium channels.
    Lainé M; Lin MC; Bannister JP; Silverman WR; Mock AF; Roux B; Papazian DM
    Neuron; 2003 Jul; 39(3):467-81. PubMed ID: 12895421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular motions within the pore of voltage-dependent sodium channels.
    Bénitah JP; Ranjan R; Yamagishi T; Janecki M; Tomaselli GF; Marban E
    Biophys J; 1997 Aug; 73(2):603-13. PubMed ID: 9251780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The activation gate of a voltage-gated K+ channel can be trapped in the open state by an intersubunit metal bridge.
    Holmgren M; Shin KS; Yellen G
    Neuron; 1998 Sep; 21(3):617-21. PubMed ID: 9768847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimerization of TWIK-1 K+ channel subunits via a disulfide bridge.
    Lesage F; Reyes R; Fink M; Duprat F; Guillemare E; Lazdunski M
    EMBO J; 1996 Dec; 15(23):6400-7. PubMed ID: 8978667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S3b amino acid residues do not shuttle across the bilayer in voltage-dependent Shaker K+ channels.
    Gonzalez C; Morera FJ; Rosenmann E; Alvarez O; Latorre R
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5020-5. PubMed ID: 15774578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore mutations alter closing and opening kinetics in Shaker K+ channels.
    Molina A; Ortega-Sáenz P; Lopez-Barneo J
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):327-37. PubMed ID: 9575283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic interactions between transmembrane segments mediate folding of Shaker K+ channel subunits.
    Tiwari-Woodruff SK; Schulteis CT; Mock AF; Papazian DM
    Biophys J; 1997 Apr; 72(4):1489-500. PubMed ID: 9083655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The charybdotoxin receptor of a Shaker K+ channel: peptide and channel residues mediating molecular recognition.
    Goldstein SA; Pheasant DJ; Miller C
    Neuron; 1994 Jun; 12(6):1377-88. PubMed ID: 7516689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperative subunit interactions in C-type inactivation of K channels.
    Ogielska EM; Zagotta WN; Hoshi T; Heinemann SH; Haab J; Aldrich RW
    Biophys J; 1995 Dec; 69(6):2449-57. PubMed ID: 8599651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of maurotoxin action on Shaker potassium channels.
    Avdonin V; Nolan B; Sabatier JM; De Waard M; Hoshi T
    Biophys J; 2000 Aug; 79(2):776-87. PubMed ID: 10920011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shaker and ether-à-go-go K+ channel subunits fail to coassemble in Xenopus oocytes.
    Tang CY; Schulteis CT; Jiménez RM; Papazian DM
    Biophys J; 1998 Sep; 75(3):1263-70. PubMed ID: 9726929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.