BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 8810921)

  • 1. Immobilized membrane vesicle or proteoliposome affinity chromatography. Frontal analysis of interactions of cytochalasin B and D-glucose with the human red cell glucose transporter.
    Brekkan E; Lundqvist A; Lundahl P
    Biochemistry; 1996 Sep; 35(37):12141-5. PubMed ID: 8810921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilized proteoliposome affinity chromatography for quantitative analysis of specific interactions between solutes and membrane proteins. Interaction of cytochalasin B and D-glucose with the glucose transporter Glut1.
    Yang Q; Lundahl P
    Biochemistry; 1995 Jun; 34(22):7289-94. PubMed ID: 7779771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomembrane affinity chromatographic analysis of nitrobenzylthioinosine binding to the reconstituted human red cell nucleoside transporter.
    Haneskog L; Lundqvist A; Lundahl P
    J Mol Recognit; 1998; 11(1-6):58-61. PubMed ID: 10076807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of Glut1 glucose transporter in human erythrocytes.
    Zhang JZ; Ismail-Beigi F
    Arch Biochem Biophys; 1998 Aug; 356(1):86-92. PubMed ID: 9681995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion between two cytochalasin B-binding states of the human GLUT1 glucose transporter.
    Gottschalk I; Lundqvist A; Zeng CM; Hägglund CL; Zuo SS; Brekkan E; Eaker D; Lundahl P
    Eur J Biochem; 2000 Dec; 267(23):6875-82. PubMed ID: 11082199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stop-flow analysis of cooperative interactions between GLUT1 sugar import and export sites.
    Sultzman LA; Carruthers A
    Biochemistry; 1999 May; 38(20):6640-50. PubMed ID: 10350483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. D-Glucose, forskolin and cytochalasin B affinities for the glucose transporter Glut1. Study of pH and reconstitution effects by biomembrane affinity chromatography.
    Lu L; Lundqvist A; Zeng CM; Lagerquist C; Lundahl P
    J Chromatogr A; 1997 Jul; 776(1):81-6. PubMed ID: 9286080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatography on cells: analyses of solute interactions with the glucose transporter Glut1 in human red cells adsorbed on lectin-gel beads.
    Gottschalk I; Li YM; Lundahl P
    J Chromatogr B Biomed Sci Appl; 2000 Feb; 739(1):55-62. PubMed ID: 10744313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose affinity for the glucose transporter Glut1 in native or reconstituted lipid bilayers. Temperature-dependence study by biomembrane affinity chromatography.
    Lundqvist A; Lundahl P
    J Chromatogr A; 1997 Jul; 776(1):87-91. PubMed ID: 9286081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cadmium increases GLUT1 substrate binding affinity in vitro while reducing its cytochalasin B binding affinity.
    Lachaal M; Liu H; Kim S; Spangler RA; Jung CY
    Biochemistry; 1996 Nov; 35(47):14958-62. PubMed ID: 8942661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiation of erythrocyte-(GLUT1), liver-(GLUT2), and adipocyte-type (GLUT4) glucose transporters by binding of the inhibitory ligands cytochalasin B, forskolin, dipyridamole, and isobutylmethylxanthine.
    Hellwig B; Joost HG
    Mol Pharmacol; 1991 Sep; 40(3):383-9. PubMed ID: 1716731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of human erythrocyte glucose transporter in decylmaltoside detergent solution.
    Boulter JM; Wang DN
    Protein Expr Purif; 2001 Jul; 22(2):337-48. PubMed ID: 11437611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quench-flow analysis reveals multiple phases of GluT1-mediated sugar transport.
    Blodgett DM; Carruthers A
    Biochemistry; 2005 Feb; 44(7):2650-60. PubMed ID: 15709778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the oligomeric state of the red blood cell glucose transporter GLUT1.
    Zuo S; Hellman U; Lundahl P
    Biochim Biophys Acta; 2003 Dec; 1618(1):8-16. PubMed ID: 14643928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoaffinity labeling of the K562 cell membrane D-glucose transporter with cytochalasin B.
    Uezato T
    Biochem Int; 1986 Feb; 12(2):199-206. PubMed ID: 3457566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of the human erythrocyte glucose transport protein are determined by cellular context.
    Levine KB; Robichaud TK; Hamill S; Sultzman LA; Carruthers A
    Biochemistry; 2005 Apr; 44(15):5606-16. PubMed ID: 15823019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanol weakens cytochalasin B binding to the GLUT1 glucose transporter and drug partitioning into lipid bilayers.
    Lagerquist Hägglund C; Gottschalk I; Lundahl P
    J Chromatogr A; 2004 Mar; 1031(1-2):113-6. PubMed ID: 15058574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomembrane affinity chromatographic analysis of inhibitor binding to the human red cell nucleoside transporter in immobilized cells, vesicles and proteoliposomes.
    Haneskog L; Zeng CM; Lundqvist A; Lundahl P
    Biochim Biophys Acta; 1998 Apr; 1371(1):1-4. PubMed ID: 9565649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose transporter oligomeric structure determines transporter function. Reversible redox-dependent interconversions of tetrameric and dimeric GLUT1.
    Hebert DN; Carruthers A
    J Biol Chem; 1992 Nov; 267(33):23829-38. PubMed ID: 1429721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.