BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 8810929)

  • 1. Fe2+, Fe3+, and oxygen react with DNA-derived radicals formed during iron-mediated Fenton reactions.
    Henle ES; Luo Y; Linn S
    Biochemistry; 1996 Sep; 35(37):12212-9. PubMed ID: 8810929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The iron-catalyzed oxidation of dithiothreitol is a biphasic process: hydrogen peroxide is involved in the initiation of a free radical chain of reactions.
    Netto LE; Stadtman ER
    Arch Biochem Biophys; 1996 Sep; 333(1):233-42. PubMed ID: 8806776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of horseradish peroxidase catalyzed epinephrine oxidation: obligatory role of endogenous O2- and H2O2.
    Adak S; Bandyopadhyay U; Bandyopadhyay D; Banerjee RK
    Biochemistry; 1998 Dec; 37(48):16922-33. PubMed ID: 9836585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of molecular oxygen in the generation of hydroxyl and superoxide anion radicals during enzymatic Cr(VI) reduction and its implication to Cr(VI)-induced carcinogenesis.
    Leonard S; Wang S; Zang L; Castranova V; Vallyathan V; Shi X
    J Environ Pathol Toxicol Oncol; 2000; 19(1-2):49-60. PubMed ID: 10905508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of citrinin on iron-redox cycle.
    Da Lozzo EJ; Mangrich AS; Rocha ME; de Oliveira MB; Carnieri EG
    Cell Biochem Funct; 2002 Mar; 20(1):19-29. PubMed ID: 11835267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antioxidant properties of S-adenosyl-L-methionine in Fe(2+)-initiated oxidations.
    Caro AA; Cederbaum AI
    Free Radic Biol Med; 2004 May; 36(10):1303-16. PubMed ID: 15110395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical destruction of MTBE using Fenton's reagent: effect of ferrous iron/hydrogen peroxide ratio.
    Burbano A; Dionysiou D; Suidan M; Richardson T
    Water Sci Technol; 2003; 47(9):165-71. PubMed ID: 12830956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular iron (II) can protect cells from hydrogen peroxide.
    Hempel SL; Buettner GR; Wessels DA; Galvan GM; O'Malley YQ
    Arch Biochem Biophys; 1996 Jun; 330(2):401-8. PubMed ID: 8660671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron and dioxygen chemistry is an important route to initiation of biological free radical oxidations: an electron paramagnetic resonance spin trapping study.
    Qian SY; Buettner GR
    Free Radic Biol Med; 1999 Jun; 26(11-12):1447-56. PubMed ID: 10401608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of *OH initiated by interaction of Fe2+ and Cu+ with dioxygen; comparison with the Fenton chemistry.
    UrbaƄski NK; Beresewicz A
    Acta Biochim Pol; 2000; 47(4):951-62. PubMed ID: 11996118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment.
    Yoon J; Lee Y; Kim S
    Water Sci Technol; 2001; 44(5):15-21. PubMed ID: 11695453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of glutathione on the oxidation of 1-methyl-6-hydroxy-1,2,3,4-tetrahydro-beta-carboline: chemistry of potential relevance to the addictive and neurodegenerative consequences of ethanol use.
    Han QP; Dryhurst G
    J Med Chem; 1996 Mar; 39(7):1494-508. PubMed ID: 8691480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the fenton reaction in wine.
    Elias RJ; Waterhouse AL
    J Agric Food Chem; 2010 Feb; 58(3):1699-707. PubMed ID: 20047324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative damage to DNA constituents by iron-mediated Fenton reactions--the thymidine family.
    Chattopadhyaya R
    J Biomol Struct Dyn; 2014; 32(1):155-69. PubMed ID: 23252741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced oxidation processes: mechanistic aspects.
    von Sonntag C
    Water Sci Technol; 2008; 58(5):1015-21. PubMed ID: 18824799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleic acid alkylation by free radical metabolites of ethanol. Formation of 8-(1-hydroxyethyl)guanine and 8-(2-hydroxyethyl)guanine adducts.
    Nakao LS; Augusto O
    Chem Res Toxicol; 1998 Aug; 11(8):888-94. PubMed ID: 9705750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of Pycnogenol on DNA damage in vitro and expression of superoxide dismutase and HP1 in Escherichia coli SOD and catalase deficient mutant cells.
    Kim YG; Park HY
    Phytother Res; 2004 Nov; 18(11):900-5. PubMed ID: 15597332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ESR spin-trapping studies on the reaction of Fe2+ ions with H2O2-reactive species in oxygen toxicity in biology.
    Yamazaki I; Piette LH
    J Biol Chem; 1990 Aug; 265(23):13589-94. PubMed ID: 2166035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free radical oxidation of (E)-retinoic acid by the Fenton reagent: competing epoxidation and oxidative breakdown pathways and novel products of 5,6-epoxyretinoic acid transformation.
    Panzella L; Manini P; Napolitano A; d'Ischia M
    Chem Res Toxicol; 2004 Dec; 17(12):1716-24. PubMed ID: 15606149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.