BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 8811083)

  • 1. Strength of translation initiation signal sequence of mRNA as studied by quantification method: effect of nucleotide substitutions upon translation efficiency in rat preproinsulin mRNA.
    Iida Y; Masuda T
    Nucleic Acids Res; 1996 Sep; 24(17):3313-6. PubMed ID: 8811083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification analysis of translation initiation signal sequences in vertebrate mRNAs.
    Lida Y; Masuda T
    Nucleic Acids Symp Ser; 1995; (34):103-4. PubMed ID: 8841573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification analysis of translation initiation signal in vertebrate mRNAs: effect of nucleotides at positions +4(-)+6 upon efficiency of translation initiation.
    Iida Y; Kanagu D
    Nucleic Acids Symp Ser; 2000; (44):77-8. PubMed ID: 12903276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes.
    Kozak M
    Cell; 1986 Jan; 44(2):283-92. PubMed ID: 3943125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Point mutations close to the AUG initiator codon affect the efficiency of translation of rat preproinsulin in vivo.
    Kozak M
    Nature; 1984 Mar 15-21; 308(5956):241-6. PubMed ID: 6700727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells.
    Kozak M
    J Mol Biol; 1987 Aug; 196(4):947-50. PubMed ID: 3681984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eukaryotic ribosomes can recognize preproinsulin initiation codons irrespective of their position relative to the 5' end of mRNA.
    Lomedico PT; McAndrew SJ
    Nature; 1982 Sep; 299(5880):221-6. PubMed ID: 6955600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection of initiation sites by eucaryotic ribosomes: effect of inserting AUG triplets upstream from the coding sequence for preproinsulin.
    Kozak M
    Nucleic Acids Res; 1984 May; 12(9):3873-93. PubMed ID: 6328442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cis-element in the 5' untranslated region of the preproinsulin mRNA (ppIGE) is required for glucose regulation of proinsulin translation.
    Wicksteed B; Uchizono Y; Alarcon C; McCuaig JF; Shalev A; Rhodes CJ
    Cell Metab; 2007 Mar; 5(3):221-7. PubMed ID: 17339029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure and evolution of the two nonallelic rat preproinsulin genes.
    Lomedico P; Rosenthal N; Efstratidadis A; Gilbert W; Kolodner R; Tizard R
    Cell; 1979 Oct; 18(2):545-58. PubMed ID: 498284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of translation initiation sites in human mRNA sequences with AUG start codon in weak Kozak context: A neural network approach.
    Tikole S; Sankararamakrishnan R
    Biochem Biophys Res Commun; 2008 May; 369(4):1166-8. PubMed ID: 18342624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperativity between the preproinsulin mRNA untranslated regions is necessary for glucose-stimulated translation.
    Wicksteed B; Herbert TP; Alarcon C; Lingohr MK; Moss LG; Rhodes CJ
    J Biol Chem; 2001 Jun; 276(25):22553-8. PubMed ID: 11297542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial regulation of insulin production in rat pancreatic islets.
    Leibowitz G; Khaldi MZ; Shauer A; Parnes M; Oprescu AI; Cerasi E; Jonas JC; Kaiser N
    Diabetologia; 2005 Aug; 48(8):1549-59. PubMed ID: 15986240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes.
    Kozak M
    Mol Cell Biol; 1987 Oct; 7(10):3438-45. PubMed ID: 3683388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific co-ordinated regulation of PC3 and PC2 gene expression with that of preproinsulin in insulin-producing beta TC3 cells.
    Schuppin GT; Rhodes CJ
    Biochem J; 1996 Jan; 313 ( Pt 1)(Pt 1):259-68. PubMed ID: 8546693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide sequence of human preproinsulin complementary DNA.
    Sures I; Goeddel DV; Gray A; Ullrich A
    Science; 1980 Apr; 208(4439):57-9. PubMed ID: 6927840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influences of mRNA secondary structure on initiation by eukaryotic ribosomes.
    Kozak M
    Proc Natl Acad Sci U S A; 1986 May; 83(9):2850-4. PubMed ID: 3458245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for biosynthesis of preproinsulin in gut of rat.
    Kendzierski KS; Pansky B; Budd GC; Saffran M
    Endocrine; 2000 Dec; 13(3):353-9. PubMed ID: 11216648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleotide sequence analysis of the cloned salmon preproinsulin cDNA.
    Sorokin AV; Petrenko OI; Kavsan VM; Kozlov YI; Debabov VG; Zlochevskij ML
    Gene; 1982 Dec; 20(3):367-76. PubMed ID: 6897724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of simian virus 40-rat preproinsulin recombinants in monkey kidney cells: use of preproinsulin RNA processing signals.
    Gruss P; Khoury G
    Proc Natl Acad Sci U S A; 1981 Jan; 78(1):133-7. PubMed ID: 6264427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.