These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8811236)

  • 1. Automated flicker perimetry in early primary open-angle glaucoma.
    Rota-Bartelink A; Pitt A; Story I; Rait J
    Aust N Z J Ophthalmol; 1996 May; 24(2 Suppl):25-7. PubMed ID: 8811236
    [No Abstract]   [Full Text] [Related]  

  • 2. The diagnostic value of automated flicker threshold perimetry.
    Rota-Bartelink A
    Curr Opin Ophthalmol; 1999 Apr; 10(2):135-9. PubMed ID: 10537764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated Perimetry Under the Microscope: A Re-Examination of Fundamental Assumptions.
    Demirel S
    Invest Ophthalmol Vis Sci; 2015 Nov; 56(12):7224. PubMed ID: 26544790
    [No Abstract]   [Full Text] [Related]  

  • 4. Short-wavelength automated perimetry and motion automated perimetry in patients with glaucoma.
    Sample PA; Bosworth CF; Weinreb RN
    Arch Ophthalmol; 1997 Sep; 115(9):1129-33. PubMed ID: 9298053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flicker-defined form perimetry in glaucoma patients.
    Horn FK; Kremers J; Mardin CY; Jünemann AG; Adler W; Tornow RP
    Graefes Arch Clin Exp Ophthalmol; 2015 Mar; 253(3):447-55. PubMed ID: 25511293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Random dot motion perimetry in patients with glaucoma and in normal subjects.
    Wall M; Ketoff KM
    Am J Ophthalmol; 1995 Nov; 120(5):587-96. PubMed ID: 7485360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison between computerized static perimetry and high-pass resolution perimetry in the follow-up of glaucomatous patients.
    Schenone M; Traverso CE; Molfino F; Capris P; Corallo G; Semino E
    Acta Ophthalmol Scand Suppl; 1997; (224):48-9. PubMed ID: 9589735
    [No Abstract]   [Full Text] [Related]  

  • 8. High-pass resolution perimetry in eyes with ocular hypertension and primary open-angle glaucoma.
    Sample PA; Ahn DS; Lee PC; Weinreb RN
    Am J Ophthalmol; 1992 Mar; 113(3):309-16. PubMed ID: 1543225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short wavelength automated perimetry, frequency doubling technology perimetry, and pattern electroretinography for prediction of progressive glaucomatous standard visual field defects.
    Bayer AU; Erb C
    Ophthalmology; 2002 May; 109(5):1009-17. PubMed ID: 11986111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of glaucoma progression by perimetry and optic disc photography at different stages of the disease: results from the Early Manifest Glaucoma Trial.
    Öhnell H; Heijl A; Anderson H; Bengtsson B
    Acta Ophthalmol; 2017 May; 95(3):281-287. PubMed ID: 27778463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signal/noise analysis to compare tests for measuring visual field loss and its progression.
    Artes PH; Chauhan BC
    Invest Ophthalmol Vis Sci; 2009 Oct; 50(10):4700-8. PubMed ID: 19458326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motion automated perimetry identifies early glaucomatous field defects.
    Bosworth CF; Sample PA; Gupta N; Bathija R; Weinreb RN
    Arch Ophthalmol; 1998 Sep; 116(9):1153-8. PubMed ID: 9747672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of frequency doubling and flicker defined form perimetry in early glaucoma.
    Horn FK; Scharch V; Mardin CY; Lämmer R; Kremers J
    Graefes Arch Clin Exp Ophthalmol; 2016 May; 254(5):937-46. PubMed ID: 26883356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-conventional perimetric methods in the detection of early glaucomatous functional damage.
    Salvetat ML; Zeppieri M; Tosoni C; Parisi L; Brusini P
    Eye (Lond); 2010 May; 24(5):835-42. PubMed ID: 19696803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delayed postretinal neural conduction in glaucoma patients: correlations between electrophysiological and computerized static perimetry parameters.
    Parisi V; Manni GL; Sgrulletta R; Colacino G; Centofanti M; Bucci MG
    Acta Ophthalmol Scand Suppl; 1997; (224):31-2. PubMed ID: 9589722
    [No Abstract]   [Full Text] [Related]  

  • 16. Detectability of glaucomatous changes using SAP, FDT, flicker perimetry, and OCT.
    Nomoto H; Matsumoto C; Takada S; Hashimoto S; Arimura E; Okuyama S; Shimomura Y
    J Glaucoma; 2009 Feb; 18(2):165-71. PubMed ID: 19225357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function correlations in glaucoma using matrix and standard automated perimetry versus time-domain and spectral-domain OCT devices.
    Pinto LM; Costa EF; Melo LA; Gross PB; Sato ET; Almeida AP; Maia A; Paranhos A
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(5):3074-80. PubMed ID: 24722699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Sensitivity and specificity of flicker perimetry with Pulsar. Comparison with achromatic (white-on-white) perimetry in glaucoma patients].
    Göbel K; Erb C
    Ophthalmologe; 2013 Feb; 110(2):141-5. PubMed ID: 23338528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-sense, flicker and resolution perimetry in glaucoma: a comparative study.
    Lachenmayr BJ; Drance SM; Douglas GR; Mikelberg FS
    Graefes Arch Clin Exp Ophthalmol; 1991; 229(3):246-51. PubMed ID: 1869060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of unsupervised oculokinetic perimetry for detecting glaucomatous visual field defects.
    Harper RA; Hill AR; Reeves BC
    Ophthalmic Physiol Opt; 1994 Apr; 14(2):199-202. PubMed ID: 8022603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.