These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 8811483)

  • 1. Delaunay tessellation of proteins: four body nearest-neighbor propensities of amino acid residues.
    Singh RK; Tropsha A; Vaisman II
    J Comput Biol; 1996; 3(2):213-21. PubMed ID: 8811483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical geometry analysis of proteins: implications for inverted structure prediction.
    Tropsha A; Singh RK; Vaisman II; Zheng W
    Pac Symp Biocomput; 1996; ():614-23. PubMed ID: 9390262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new approach to protein fold recognition based on Delaunay tessellation of protein structure.
    Zheng W; Cho SJ; Vaisman II; Tropsha A
    Pac Symp Biocomput; 1997; ():486-97. PubMed ID: 9390317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of atomic four-body statistical potentials derived from the delaunay tessellation of protein structures.
    Masso M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6321-4. PubMed ID: 23367374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel method to detect a motif of local structures in different protein conformations.
    Wako H; Yamato T
    Protein Eng; 1998 Nov; 11(11):981-90. PubMed ID: 9876918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delaunay-based nonlocal interactions are sufficient and accurate in protein fold recognition.
    Mirzaie M; Sadeghi M
    Proteins; 2014 Mar; 82(3):415-23. PubMed ID: 24038726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the relative stability of liganded versus ligand-free protein conformations using Simplicial Neighborhood Analysis of Protein Packing (SNAPP) method.
    Sherman DB; Zhang S; Pitner JB; Tropsha A
    Proteins; 2004 Sep; 56(4):828-38. PubMed ID: 15281134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical significance of hierarchical multi-body potentials based on Delaunay tessellation and their application in sequence-structure alignment.
    Munson PJ; Singh RK
    Protein Sci; 1997 Jul; 6(7):1467-81. PubMed ID: 9232648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graph theoretic properties of networks formed by the Delaunay tessellation of protein structures.
    Taylor TJ; Vaisman II
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041925. PubMed ID: 16711854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-body interactions within the graph of protein structure.
    Munson PJ; Singh RK
    Proc Int Conf Intell Syst Mol Biol; 1997; 5():198-201. PubMed ID: 9322036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of ice Ih and ice Ic as described in the language of Delaunay simplices.
    Naberukhin YI; Voloshin VP
    Acta Crystallogr A; 2011 Nov; 67(Pt 6):507-11. PubMed ID: 22011465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a four-body statistical pseudo-potential to discriminate native from non-native protein conformations.
    Krishnamoorthy B; Tropsha A
    Bioinformatics; 2003 Aug; 19(12):1540-8. PubMed ID: 12912835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved residue clustering and protein structure prediction.
    Schueler-Furman O; Baker D
    Proteins; 2003 Aug; 52(2):225-35. PubMed ID: 12833546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple topological representation of protein structure: implications for new, fast, and robust structural classification.
    Bostick DL; Shen M; Vaisman II
    Proteins; 2004 Aug; 56(3):487-501. PubMed ID: 15229882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing graph representations of protein structure for mining family-specific residue-based packing motifs.
    Huan J; Bandyopadhyay D; Wang W; Snoeyink J; Prins J; Tropsha A
    J Comput Biol; 2005; 12(6):657-71. PubMed ID: 16108709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid pair- and triplet-wise groupings in the interior of α-helical segments in proteins.
    de Sousa MM; Munteanu CR; Pazos A; Fonseca NA; Camacho R; Magalhães AL
    J Theor Biol; 2011 Feb; 271(1):136-44. PubMed ID: 21130100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Logos for amino-acid preferences in different backbone packing density regions of protein structural classes.
    Kannan N; Schneider TD; Vishveshwara S
    Acta Crystallogr D Biol Crystallogr; 2000 Sep; 56(Pt 9):1156-65. PubMed ID: 10957634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multibody, whole-residue potential for protein structures, with testing by Monte Carlo simulated annealing.
    Mayewski S
    Proteins; 2005 May; 59(2):152-69. PubMed ID: 15723360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical analysis of pair-wise compatibility of spatially nearest neighbor and adjacent residues in alpha-helix and beta-strands: application to a minimal model for secondary structure prediction.
    Sen S
    Biophys Chem; 2003 Jan; 103(1):35-49. PubMed ID: 12504253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.