These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 8811734)
21. Contribution of active site residues to the activity and thermal stability of ribonuclease Sa. Yakovlev GI; Mitkevich VA; Shaw KL; Trevino S; Newsom S; Pace CN; Makarov AA Protein Sci; 2003 Oct; 12(10):2367-73. PubMed ID: 14500895 [TBL] [Abstract][Full Text] [Related]
22. Fluorescence spectrum of barnase: contributions of three tryptophan residues and a histidine-related pH dependence. Loewenthal R; Sancho J; Fersht AR Biochemistry; 1991 Jul; 30(27):6775-9. PubMed ID: 2065058 [TBL] [Abstract][Full Text] [Related]
23. Comparative study of thermostability and structure of close homologues--barnase and binase. Makarov AA; Protasevich II; Kuznetsova NV; Fedorov BB; Korolev SV; Struminskaya NK; Bazhulina NP; Leshchinskaya IB; Hartley RW; Kirpichnikov MP J Biomol Struct Dyn; 1993 Jun; 10(6):1047-65. PubMed ID: 8357541 [TBL] [Abstract][Full Text] [Related]
24. Identification of the barstar binding site of barnase by NMR spectroscopy and hydrogen-deuterium exchange. Jones DN; Bycroft M; Lubienski MJ; Fersht AR FEBS Lett; 1993 Sep; 331(1-2):165-72. PubMed ID: 8405399 [TBL] [Abstract][Full Text] [Related]
25. Effect of active site residues in barnase on activity and stability. Meiering EM; Serrano L; Fersht AR J Mol Biol; 1992 Jun; 225(3):585-9. PubMed ID: 1602471 [TBL] [Abstract][Full Text] [Related]
26. Importance of electrostatic interactions in the rapid binding of polypeptides to GroEL. Perrett S; Zahn R; Stenberg G; Fersht AR J Mol Biol; 1997 Jun; 269(5):892-901. PubMed ID: 9223649 [TBL] [Abstract][Full Text] [Related]
27. Experimental assignment of the structure of the transition state for the association of barnase and barstar. Frisch C; Fersht AR; Schreiber G J Mol Biol; 2001 Apr; 308(1):69-77. PubMed ID: 11302708 [TBL] [Abstract][Full Text] [Related]
28. Thermodynamic study of the acid denaturation of barnase and its dependence on ionic strength: evidence for residual electrostatic interactions in the acid/thermally denatured state. Oliveberg M; Vuilleumier S; Fersht AR Biochemistry; 1994 Jul; 33(29):8826-32. PubMed ID: 8038174 [TBL] [Abstract][Full Text] [Related]
30. Characterization of pKa values and titration shifts in the cytotoxic ribonuclease alpha-sarcin by NMR. Relationship between electrostatic interactions, structure, and catalytic function. Pérez-Cañadillas JM; Campos-Olivas R; Lacadena J; Martínez del Pozo A; Gavilanes JG; Santoro J; Rico M; Bruix M Biochemistry; 1998 Nov; 37(45):15865-76. PubMed ID: 9843392 [TBL] [Abstract][Full Text] [Related]
31. Comparative study of binase and barnase: experience in chimeric ribonucleases. Schulga A; Kurbanov F; Kirpichnikov M; Protasevich I; Lobachov V; Ranjbar B; Chekhov V; Polyakov K; Engelborghs Y; Makarov A Protein Eng; 1998 Sep; 11(9):775-82. PubMed ID: 9796826 [TBL] [Abstract][Full Text] [Related]
32. Conformational states bound by the molecular chaperones GroEL and secB: a hidden unfolding (annealing) activity. Zahn R; Perrett S; Fersht AR J Mol Biol; 1996 Aug; 261(1):43-61. PubMed ID: 8760501 [TBL] [Abstract][Full Text] [Related]
33. [Comparison of the heat stability and structure close homologs--Bacillus amyloliquefaciens ribonuclease and Bacillus intermedius 7P ribonuclease]. Makarov AA; Kuznetsova NV; Protasevich II; Fedorov BB; Korolev SV; Struminskaia NK; Bazhulina NP; Balaban NP; Leshchinskaia IV; Khartli RV Mol Biol (Mosk); 1993; 27(2):416-28. PubMed ID: 8487771 [TBL] [Abstract][Full Text] [Related]
34. An irregular beta-bulge common to a group of bacterial RNases is an important determinant of stability and function in barnase. Axe DD; Foster NW; Fersht AR J Mol Biol; 1999 Mar; 286(5):1471-85. PubMed ID: 10064710 [TBL] [Abstract][Full Text] [Related]
35. Histidine residues at the N- and C-termini of alpha-helices: perturbed pKas and protein stability. Sancho J; Serrano L; Fersht AR Biochemistry; 1992 Mar; 31(8):2253-8. PubMed ID: 1540580 [TBL] [Abstract][Full Text] [Related]
36. Thermodynamics of the interaction of barnase and barstar: changes in free energy versus changes in enthalpy on mutation. Frisch C; Schreiber G; Johnson CM; Fersht AR J Mol Biol; 1997 Apr; 267(3):696-706. PubMed ID: 9126847 [TBL] [Abstract][Full Text] [Related]
37. Interaction energy decomposition in protein-protein association: a quantum mechanical study of barnase-barstar complex. Ababou A; van der Vaart A; Gogonea V; Merz KM Biophys Chem; 2007 Jan; 125(1):221-36. PubMed ID: 16962699 [TBL] [Abstract][Full Text] [Related]
38. Modular enzyme design: regulation by mutually exclusive protein folding. Ha JH; Butler JS; Mitrea DM; Loh SN J Mol Biol; 2006 Apr; 357(4):1058-62. PubMed ID: 16483603 [TBL] [Abstract][Full Text] [Related]
39. How optimal are the binding energetics of barnase and barstar? Wang T; Tomic S; Gabdoulline RR; Wade RC Biophys J; 2004 Sep; 87(3):1618-30. PubMed ID: 15345541 [TBL] [Abstract][Full Text] [Related]
40. Recognition between a bacterial ribonuclease, barnase, and its natural inhibitor, barstar. Guillet V; Lapthorn A; Hartley RW; Mauguen Y Structure; 1993 Nov; 1(3):165-76. PubMed ID: 16100951 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]