These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

5645 related articles for article (PubMed ID: 8812068)

  • 1. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages.
    Cox RW
    Comput Biomed Res; 1996 Jun; 29(3):162-73. PubMed ID: 8812068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IBIS integrated biological imaging system: electron micrograph image-processing software running on Unix workstations.
    Flifla MJ; Garreau M; Rolland JP; Coatrieux JL; Thomas D
    Comput Appl Biosci; 1992 Dec; 8(6):583-6. PubMed ID: 1468016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AFNI: what a long strange trip it's been.
    Cox RW
    Neuroimage; 2012 Aug; 62(2):743-7. PubMed ID: 21889996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Cerefy Neuroradiology Atlas: a Talairach-Tournoux atlas-based tool for analysis of neuroimages available over the internet.
    Nowinski WL; Belov D
    Neuroimage; 2003 Sep; 20(1):50-7. PubMed ID: 14527569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronized 2D/3D optical mapping for interactive exploration and real-time visualization of multi-function neurological images.
    Zhang Q; Alexander M; Ryner L
    Comput Med Imaging Graph; 2013; 37(7-8):552-67. PubMed ID: 23968722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast Talairach Transformation for magnetic resonance neuroimages.
    Nowinski WL; Qian G; Bhanu Prakash KN; Hu Q; Aziz A
    J Comput Assist Tomogr; 2006; 30(4):629-41. PubMed ID: 16845295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A locus-driven mechanism for rapid and automated atlas-assisted analysis of functional images by using the Brain Atlas for Functional Imaging.
    Nowinski WL; Thirunavuukarasuu A
    Neurosurg Focus; 2003 Jul; 15(1):E3. PubMed ID: 15355005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space.
    Schmahmann JD; Doyon J; McDonald D; Holmes C; Lavoie K; Hurwitz AS; Kabani N; Toga A; Evans A; Petrides M
    Neuroimage; 1999 Sep; 10(3 Pt 1):233-60. PubMed ID: 10458940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FAMIS: a software package for functional feature extraction from biomedical multidimensional images.
    Frouin F; Bazin JP; Di Paola M; Jolivet O; Di Paola R
    Comput Med Imaging Graph; 1992; 16(2):81-91. PubMed ID: 1568204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-brain 2.0--narrowing the gap between personal computers and high end workstations.
    Kling-Petersen T; Pascher R; Rydmark M
    Stud Health Technol Inform; 1998; 50():234-9. PubMed ID: 10180546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VoxeLine: a software program for 3D real-time visualization of biomedical images.
    Diallo B; Dolidon F; Travere JM; Mazoyer B
    Comput Med Imaging Graph; 1998; 22(4):275-89. PubMed ID: 9840658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space.
    Collins DL; Neelin P; Peters TM; Evans AC
    J Comput Assist Tomogr; 1994; 18(2):192-205. PubMed ID: 8126267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Software tools for analysis and visualization of fMRI data.
    Cox RW; Hyde JS
    NMR Biomed; 1997; 10(4-5):171-8. PubMed ID: 9430344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A stereotactic method for image-guided transcranial magnetic stimulation validated with fMRI and motor-evoked potentials.
    Neggers SF; Langerak TR; Schutter DJ; Mandl RC; Ramsey NF; Lemmens PJ; Postma A
    Neuroimage; 2004 Apr; 21(4):1805-17. PubMed ID: 15050601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic localization of anatomical point landmarks for brain image processing algorithms.
    Neu SC; Toga AW
    Neuroinformatics; 2008; 6(2):135-48. PubMed ID: 18512163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for assessing the accuracy of intersubject registration of the human brain using anatomic landmarks.
    Grachev ID; Berdichevsky D; Rauch SL; Heckers S; Kennedy DN; Caviness VS; Alpert NM
    Neuroimage; 1999 Feb; 9(2):250-68. PubMed ID: 9927554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Registration of functional and anatomical MRI: accuracy assessment and application in navigated neurosurgery.
    Rohlfing T; West JB; Beier J; Liebig T; Taschner CA; Thomale UW
    Comput Aided Surg; 2000; 5(6):414-25. PubMed ID: 11295854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
    Tzourio-Mazoyer N; Landeau B; Papathanassiou D; Crivello F; Etard O; Delcroix N; Mazoyer B; Joliot M
    Neuroimage; 2002 Jan; 15(1):273-89. PubMed ID: 11771995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fiswidgets: a graphical computing environment for neuroimaging analysis.
    Fissell K; Tseytlin E; Cunningham D; Iyer K; Carter CS; Schneider W; Cohen JD
    Neuroinformatics; 2003; 1(1):111-25. PubMed ID: 15055396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Object-oriented design of medical imaging software.
    Ligier Y; Ratib O; Logean M; Girard C; Perrier R; Scherrer JR
    Comput Med Imaging Graph; 1994; 18(2):125-35. PubMed ID: 8168050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 283.