BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8812160)

  • 1. The effect of inherited hydrocephalus and shunt treatment on cortical pyramidal cell dendrites in the infant H-Tx rat.
    Harris NG; McAllister JP; Conaughty JM; Jones HC
    Exp Neurol; 1996 Oct; 141(2):269-79. PubMed ID: 8812160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructural changes in the deep cortical pyramidal cells of infant rats with inherited hydrocephalus and the effect of shunt treatment.
    Boillat CA; Jones HC; Kaiser GL; Harris NG
    Exp Neurol; 1997 Oct; 147(2):377-88. PubMed ID: 9344562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progressive changes in cortical water and electrolyte content at three stages of rat infantile hydrocephalus and the effect of shunt treatment.
    Jones HC; Andersohn RW
    Exp Neurol; 1998 Nov; 154(1):126-36. PubMed ID: 9875274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shunt treatment at two postnatal ages in hydrocephalic H-Tx rats quantified using MR imaging.
    Jones HC; Harris NG; Briggs RW; Williams SC
    Exp Neurol; 1995 Jun; 133(2):144-52. PubMed ID: 7649221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal damage in hydrocephalus and its restoration by shunt insertion in experimental hydrocephalus: a study involving the neurofilament-immunostaining method.
    Aoyama Y; Kinoshita Y; Yokota A; Hamada T
    J Neurosurg; 2006 May; 104(5 Suppl):332-9. PubMed ID: 16848091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurochemical changes in the cerebral cortex of treated and untreated hydrocephalic rat pups quantified with in vitro 1H-NMR spectroscopy.
    Harris NG; Plant HD; Inglis BA; Briggs RW; Jones HC
    J Neurochem; 1997 Jan; 68(1):305-12. PubMed ID: 8978739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolite changes in the cerebral cortex of treated and untreated infant hydrocephalic rats studied using in vitro 31P-NMR spectroscopy.
    Harris NG; Plant HD; Briggs RW; Jones HC
    J Neurochem; 1996 Nov; 67(5):2030-8. PubMed ID: 8863510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early ventriculoperitoneal shunt--effects on learning ability and synaptogenesis of the brain in congenitally hydrocephalic HTX rats.
    Suda K; Sato K; Takeda N; Miyazawa T; Arai H
    Childs Nerv Syst; 1994 Jan; 10(1):19-23. PubMed ID: 8194057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ventricle shunting in young H-Tx rats with inherited congenital hydrocephalus: a quantitative histological study of cortical grey matter.
    Harris NG; Jones HC; Patel S
    Childs Nerv Syst; 1994 Jul; 10(5):293-301; discussion 301. PubMed ID: 7954498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-stimulation rewarding experience induced alterations in dendritic spine density in CA3 hippocampal and layer V motor cortical pyramidal neurons.
    Shankaranarayana Rao BS; Raju TR; Meti BL
    Neuroscience; 1999; 89(4):1067-77. PubMed ID: 10362295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of hydrocephalus and ventriculoperitoneal shunt therapy on afferent and efferent connections in the feline sensorimotor cortex.
    Eskandari R; Mcallister JP; Miller JM; Ding Y; Ham SD; Shearer DM; Way JS
    J Neurosurg; 2004 Nov; 101(2 Suppl):196-210. PubMed ID: 15835108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of cortical morphology in infantile hydrocephalic animals after ventriculoperitoneal shunt placement.
    Hale PM; McAllister JP; Katz SD; Wright LC; Lovely TJ; Miller DW; Wolfson BJ; Salotto AG; Shroff DV
    Neurosurgery; 1992 Dec; 31(6):1085-96; discussion 1096. PubMed ID: 1470319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning deficits in congenitally hydrocephalic rats and prevention by early shunt treatment.
    Jones HC; Rivera KM; Harris NG
    Childs Nerv Syst; 1995 Nov; 11(11):655-60. PubMed ID: 8608583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns.
    Larkman AU
    J Comp Neurol; 1991 Apr; 306(2):307-19. PubMed ID: 1711057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex.
    Markram H; Lübke J; Frotscher M; Roth A; Sakmann B
    J Physiol; 1997 Apr; 500 ( Pt 2)(Pt 2):409-40. PubMed ID: 9147328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective acetylcholine and dopamine lesions in neonatal rats produce distinct patterns of cortical dendritic atrophy in adulthood.
    Sherren N; Pappas BA
    Neuroscience; 2005; 136(2):445-56. PubMed ID: 16226382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocorticogram and sensory evoked potentials in the young hydrocephalic H-Tx rat.
    Bucknall RM; Jones HC
    Z Kinderchir; 1990 Dec; 45 Suppl 1():8-10. PubMed ID: 2293541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cerebral cortex in congenital hydrocephalus in the H-Tx rat: a quantitative light microscopy study.
    Jones HC; Bucknall RM; Harris NG
    Acta Neuropathol; 1991; 82(3):217-24. PubMed ID: 1927278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerated dendritic development of rat cortical pyramidal cells and interneurons after biolistic transfection with BDNF and NT4/5.
    Wirth MJ; Brun A; Grabert J; Patz S; Wahle P
    Development; 2003 Dec; 130(23):5827-38. PubMed ID: 14573511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation of apical and basal dendrites in pyramidal cells and granule cells in dissociated hippocampal cultures.
    Wu YK; Fujishima K; Kengaku M
    PLoS One; 2015; 10(2):e0118482. PubMed ID: 25705877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.