BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 8812223)

  • 1. Rat to human extrapolation of HCFC-123 kinetics deduced from halothane kinetics: a corollary approach to physiologically based pharmacokinetic modeling.
    Williams RJ; Vinegar A; McDougal JN; Jarabek AM; Fisher JW
    Fundam Appl Toxicol; 1996 Mar; 30(1):55-66. PubMed ID: 8812223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dose-dependent metabolism of 2,2-dichloro-1,1,1-trifluoroethane: a physiologically based pharmacokinetic model in the male Fischer 344 rat.
    Vinegar A; Williams RJ; Fisher JW; McDougal JN
    Toxicol Appl Pharmacol; 1994 Nov; 129(1):103-13. PubMed ID: 7974482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pentahaloethane-based chlorofluorocarbon substitutes and halothane: correlation of in vivo hepatic protein trifluoroacetylation and urinary trifluoroacetic acid excretion with calculated enthalpies of activation.
    Harris JW; Jones JP; Martin JL; LaRosa AC; Olson MJ; Pohl LR; Anders MW
    Chem Res Toxicol; 1992; 5(5):720-5. PubMed ID: 1446014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of the chlorofluorocarbon substitute 1,1-dichloro-2,2,2-trifluoroethane by rat and human liver microsomes: the role of cytochrome P450 2E1.
    Urban G; Speerschneider P; Dekant W
    Chem Res Toxicol; 1994; 7(2):170-6. PubMed ID: 8199305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic insights aid the search for CFC substitutes: risk assessment of HCFC-123 as an example.
    Jarabek AM; Fisher JW; Rubenstein R; Lipscomb JC; Williams RJ; Vinegar A; McDougal JN
    Risk Anal; 1994 Jun; 14(3):231-50. PubMed ID: 8029495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The kidney as a novel target tissue for protein adduct formation associated with metabolism of halothane and the candidate chlorofluorocarbon replacement 2,2-dichloro-1,1,1-trifluoroethane.
    Huwyler J; Aeschlimann D; Christen U; Gut J
    Eur J Biochem; 1992 Jul; 207(1):229-38. PubMed ID: 1628651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trifluoroacetylated proteins in liver and plasma of guinea pigs treated with HCFC-123 and halothane.
    Bortolato S; Zanovello A; Rugge M; Brotto M; Marini S; Gervasi PG; Manno M
    Toxicol Lett; 2003 Sep; 144(1):35-47. PubMed ID: 12919722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiologically based pharmacokinetic analysis of the concentration-dependent metabolism of halothane.
    Loizou GD; Tran CL; Anders MW
    Xenobiotica; 1997 Jan; 27(1):87-99. PubMed ID: 9041681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure to the chlorofluorocarbon substitute 2,2-dichloro-1,1,1- trifluoroethane and the anesthetic agent halothane is associated with transient protein adduct formation in the heart.
    Huwyler J; Gut J
    Biochem Biophys Res Commun; 1992 May; 184(3):1344-9. PubMed ID: 1590796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism and pharmacokinetics of selected halon replacement candidates.
    Dodd DE; Brashear WT; Vinegar A
    Toxicol Lett; 1993 May; 68(1-2):37-47. PubMed ID: 8516773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potentiation of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123)-induced liver toxicity by ethanol in guinea-pigs.
    Hoet P; Buchet JP; Sempoux C; Haufroid V; Rahier J; Lison D
    Arch Toxicol; 2002 Dec; 76(12):707-14. PubMed ID: 12451447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of HCFC-123 exposure to maternal and infant rhesus monkeys on hepatic biochemistry, lactational parameters and postnatal growth.
    Cappon GD; Keller DA; Brock WJ; Slauter RW; Hurtt ME
    Drug Chem Toxicol; 2002 Nov; 25(4):481-96. PubMed ID: 12378954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas-uptake pharmacokinetics of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123).
    Loizou GD; Urban G; Dekant W; Anders MW
    Drug Metab Dispos; 1994; 22(4):511-7. PubMed ID: 7956723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue acylation by the chlorofluorocarbon substitute 2,2-dichloro-1,1,1-trifluoroethane.
    Harris JW; Pohl LR; Martin JL; Anders MW
    Proc Natl Acad Sci U S A; 1991 Feb; 88(4):1407-10. PubMed ID: 1996342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of 1-fluoro-1,1,2-trichloroethane, 1,2-dichloro-1,1-difluoroethane, and 1,1,1-trifluoro-2-chloroethane.
    Yin H; Jones JP; Anders MW
    Chem Res Toxicol; 1995 Mar; 8(2):262-8. PubMed ID: 7766810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of 1,1-dichloro-2,2,2-trifluoroethane in rats.
    Urban G; Dekant W
    Xenobiotica; 1994 Sep; 24(9):881-92. PubMed ID: 7810170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of the hydrochlorofluorocarbon 1,2-dichloro-1,1-difluoroethane.
    Harris JW; Anders MW
    Chem Res Toxicol; 1991; 4(2):180-6. PubMed ID: 1782346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reductive activation of HCFC-123 by methaemalbumin.
    Zanovello A; Ferrara R; Manno M
    Toxicol Lett; 2003 Sep; 144(1):127-36. PubMed ID: 12919730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigations on the liver toxicity of a blend of HCFC-123 (2,2-dichloro-1,1,1-trifluoroethane) and HCFC-124 (2-chloro-1,1,1,2-tetrafluoroethane) in guinea-pigs.
    Hoet P; Buchet JP; Sempoux C; Nomiyama T; Rahier J; Lison D
    Arch Toxicol; 2001 Jul; 75(5):274-83. PubMed ID: 11548120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochrome P450 inactivation during reductive metabolism of 1,1-dichloro-2,2,2-trifluoroethane (HCFC-123) by phenobarbital- and pyridine-induced rat liver microsomes.
    Ferrara R; Tolando R; King LJ; Manno M
    Toxicol Appl Pharmacol; 1997 Apr; 143(2):420-8. PubMed ID: 9144458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.