These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 8813491)

  • 1. Interaction between the short-wavelength cone and rod systems in the electroretinogram of the cynomolgus monkey.
    Kasuga T; Ozaki H
    Doc Ophthalmol; 1995-1996; 91(2):117-27. PubMed ID: 8813491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three cone systems under white background in the electroretinogram of the cynomolgus monkey.
    Kasuga T; Ozaki H
    Doc Ophthalmol; 1994; 86(3):335-42. PubMed ID: 7813384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long wavelength-middle wavelength cone interaction under no background in the electroretinogram of the cynomolgus monkey.
    Kasuga T; Ozaki H
    Doc Ophthalmol; 1995; 90(2):177-88. PubMed ID: 7497889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-color pupillometry in enhanced S-cone syndrome caused by NR2E3 mutations.
    Collison FT; Park JC; Fishman GA; Stone EM; McAnany JJ
    Doc Ophthalmol; 2016 Jun; 132(3):157-66. PubMed ID: 27033713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of light and dark adaptation of rods on specific-hue threshold.
    Stabell U; Stabell B
    Vision Res; 2003 Dec; 43(27):2905-14. PubMed ID: 14568378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The contribution of cone responses to rat electroretinograms.
    Nixon PJ; Bui BV; Armitage JA; Vingrys AJ
    Clin Exp Ophthalmol; 2001 Jun; 29(3):193-6. PubMed ID: 11446467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo electroretinographic differentiation of rod, short-wavelength and long/medium-wavelength cone responses in dogs using silent substitution stimuli.
    Mowat FM; Wise E; Oh A; Foster ML; Kremers J
    Exp Eye Res; 2019 Aug; 185():107673. PubMed ID: 31128103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The d-wave of the rod electroretinogram of rat originates in the cone pathway.
    Naarendorp F; Williams GE
    Vis Neurosci; 1999; 16(1):91-105. PubMed ID: 10022481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rod and cone contributions to the a-wave of the electroretinogram of the macaque.
    Robson JG; Saszik SM; Ahmed J; Frishman LJ
    J Physiol; 2003 Mar; 547(Pt 2):509-30. PubMed ID: 12562933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biphasic photoreceptor degeneration induced by light in a T17M rhodopsin mouse model of cone bystander damage.
    Krebs MP; White DA; Kaushal S
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):2956-65. PubMed ID: 19136713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the rod photoresponse on light adaptation and circadian rhythmicity in the cone ERG.
    Cameron MA; Lucas RJ
    Mol Vis; 2009 Oct; 15():2209-16. PubMed ID: 19898639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rod inputs to macaque ganglion cells.
    Lee BB; Smith VC; Pokorny J; Kremers J
    Vision Res; 1997 Oct; 37(20):2813-28. PubMed ID: 9415362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rod- versus cone-driven ERGs at different stimulus sizes in normal subjects and retinitis pigmentosa patients.
    Aher AJ; McKeefry DJ; Parry NRA; Maguire J; Murray IJ; Tsai TI; Huchzermeyer C; Kremers J
    Doc Ophthalmol; 2018 Feb; 136(1):27-43. PubMed ID: 29134295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of three techniques to estimate the human dark-adapted cone electroretinogram.
    Verdon WA; Schneck ME; Haegerstrom-Portnoy G
    Vision Res; 2003 Sep; 43(19):2089-99. PubMed ID: 12842161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mouse cone photoresponses obtained with electroretinogram from the isolated retina.
    Heikkinen H; Nymark S; Koskelainen A
    Vision Res; 2008 Jan; 48(2):264-72. PubMed ID: 18166210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sensitivity and spectral identity of the cones driving the b-wave of the rat electroretinogram.
    Akula JD; Lyubarsky AL; Naarendorp F
    Vis Neurosci; 2003; 20(2):109-17. PubMed ID: 12916733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digoxin-induced reversible dysfunction of the cone photoreceptors in monkeys.
    Kinoshita J; Iwata N; Kimotsuki T; Yasuda M
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):881-92. PubMed ID: 24436189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatic rod-cone interaction during dark adaptation.
    Stabell B; Stabell U
    J Opt Soc Am A Opt Image Sci Vis; 1998 Nov; 15(11):2809-15. PubMed ID: 9803541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response sensitivity and voltage gain of the rod- and cone-bipolar cell synapses in dark-adapted tiger salamander retina.
    Yang XL; Wu SM
    J Neurophysiol; 1997 Nov; 78(5):2662-73. PubMed ID: 9356416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rod and cone contributions to the dark-adapted 15-Hz flicker electroretinogram.
    Park JC; Cao D; Collison FT; Fishman GA; McAnany JJ
    Doc Ophthalmol; 2015 Apr; 130(2):111-9. PubMed ID: 25579805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.