BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 8813847)

  • 1. Heart rate variability, baroreflex sensitivity, and cardiac vagal tone.
    Swenne CA; Bootsma M; Hyndman BW; Voogd J; Bruschke AV
    Clin Sci (Lond); 1996; 91 Suppl():113-5. PubMed ID: 8813847
    [No Abstract]   [Full Text] [Related]  

  • 2. Time delay of vagally mediated cardiac baroreflex response varies with autonomic cardiovascular control.
    Keyl C; Schneider A; Dambacher M; Bernardi L
    J Appl Physiol (1985); 2001 Jul; 91(1):283-9. PubMed ID: 11408442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relation between baroreflex sensitivity and cardiac vagal tone in humans.
    Kollai M; Jokkel G; Bonyhay I; Tomcsanyi J; Naszlady A
    Am J Physiol; 1994 Jan; 266(1 Pt 2):H21-7. PubMed ID: 8304501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time measurement of cardiac vagal tone in conscious dogs.
    Little CJ; Julu PO; Hansen S; Reid SW
    Am J Physiol; 1999 Feb; 276(2):H758-65. PubMed ID: 9950879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of parasympathetic blockade and parasympathetic withdrawal on heart rate variability.
    Challapalli S; Kadish AH; Horvath G; Goldberger JJ
    J Cardiovasc Electrophysiol; 1999 Sep; 10(9):1192-9. PubMed ID: 10517651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parasympathetic regulation of heart rate in rats after 5/6 nephrectomy is impaired despite functionally intact cardiac vagal innervation.
    Kuncová J; Svíglerová J; Kummer W; Rajdl D; Chottová-Dvoráková M; Tonar Z; Nalos L; Stengl M
    Nephrol Dial Transplant; 2009 Aug; 24(8):2362-70. PubMed ID: 19321759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vagal nerve stimulation activates vagal afferent fibers that reduce cardiac efferent parasympathetic effects.
    Yamakawa K; Rajendran PS; Takamiya T; Yagishita D; So EL; Mahajan A; Shivkumar K; Vaseghi M
    Am J Physiol Heart Circ Physiol; 2015 Nov; 309(9):H1579-90. PubMed ID: 26371172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Negative chronotropic response to low-dose atropine is associated with parasympathetic nerve-mediated cardiovascular response in postoperative patients with congenital heart disease.
    Ohuchi H; Hamamichi Y; Hayashi T; Watanabe T; Yamada O; Yagihara T; Echigo S
    Int J Cardiol; 2005 Mar; 99(3):455-62. PubMed ID: 15771928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aging alteration of cardiac vagosympathetic balance assessed through the tone-entropy analysis.
    Oida E; Kannagi T; Moritani T; Yamori Y
    J Gerontol A Biol Sci Med Sci; 1999 May; 54(5):M219-24. PubMed ID: 10362003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-dose atropine amplifies cardiac vagal modulation and increases dynamic baroreflex function in humans.
    Cho SK; Hwang GS; Kim YK; Huh IY; Hahm KD; Han SM
    Auton Neurosci; 2005 Mar; 118(1-2):108-15. PubMed ID: 15795184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective in situ parasympathetic control of the canine sinoatrial and atrioventricular nodes.
    Lazzara R; Scherlag BJ; Robinson MJ; Samet P
    Circ Res; 1973 Mar; 32(3):393-401. PubMed ID: 4691345
    [No Abstract]   [Full Text] [Related]  

  • 12. A method for determining baroreflex-mediated sympathetic and parasympathetic control of the heart in pregnant and non-pregnant sheep.
    Lumbers ER; Yu ZY
    J Physiol; 1999 Mar; 515 ( Pt 2)(Pt 2):555-66. PubMed ID: 10050021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The vagal cardiac accelerator system in the reflex control of heart rate in conscious dogs.
    Roossien A; Brunsting JR; Zaagsma J; Zijlstra WG; Muntinga JH
    Acta Physiol Scand; 2000 Nov; 170(3):191-9. PubMed ID: 11167304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of low-dose scopolamine on autonomic control of the heart.
    Raeder EA; Stys A; Cohen RJ
    Ann Noninvasive Electrocardiol; 1997 Jul; 2(3):236-41. PubMed ID: 11541512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of opposing reflex stimuli and heart rate variability to examine the effects of lipophilic and hydrophilic beta-blockers on human cardiac vagal control.
    Vaile JC; Fletcher J; Al-Ani M; Ross HF; Littler WA; Coote JH; Townend JN
    Clin Sci (Lond); 1999 Nov; 97(5):585-93; discussion 609-10. PubMed ID: 10545309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autonomic influences on atrioventricular conduction in conscious dogs.
    Thomas JX; Randall WC
    Am J Physiol; 1983 Jan; 244(1):H102-8. PubMed ID: 6849398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method of blocking the vagus nerve in the conscious dog. SAM-TR-67-73.
    Wiggins B
    Tech Rep SAM-TR; 1967 Jul; ():1-8. PubMed ID: 5301216
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of exercise on autonomic mechanisms of baroreflex control of heart rate.
    O'Leary DS; Seamans DP
    J Appl Physiol (1985); 1993 Nov; 75(5):2251-7. PubMed ID: 7905872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociation of heart rate variability from parasympathetic tone.
    Goldberger JJ; Ahmed MW; Parker MA; Kadish AH
    Am J Physiol; 1994 May; 266(5 Pt 2):H2152-7. PubMed ID: 8203614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The role of a type of m-choline receptors in realization of vagal influences on cardiac rhythm and conduction].
    Osadchiĭ OE
    Kardiologiia; 2005; 45(4):64. PubMed ID: 15940195
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.