These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 8814209)

  • 1. A ferric reductase activity is found in brush border membrane vesicles isolated from Caco-2 cells.
    Ekmekcioglu C; Feyertag J; Marktl W
    J Nutr; 1996 Sep; 126(9):2209-17. PubMed ID: 8814209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-transferrin iron uptake by trophoblast cells in culture. Significance of a NADH-dependent ferrireductase.
    Verrijt CE; Kroos MJ; Huijskes-Heins MI; van Eijk HG; van Dijk JP
    Placenta; 1998 Sep; 19(7):525-30. PubMed ID: 9778126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The plasma membrane Fe(3+)-reductase activity of Caco-2 cells is modulated during differentiation.
    Ekmekcioglu C; Strauss-Blasche G; Marktl W
    Biochem Mol Biol Int; 1998 Dec; 46(5):951-61. PubMed ID: 9861449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of Fe(III) is required for uptake of nonheme iron by Caco-2 cells.
    Han O; Failla ML; Hill AD; Morris ER; Smith JC
    J Nutr; 1995 May; 125(5):1291-9. PubMed ID: 7738689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NAD(P)H:ferric iron reductase in endosomal membranes from rat liver.
    Scheiber B; Goldenberg H
    Arch Biochem Biophys; 1993 Sep; 305(2):225-30. PubMed ID: 8396885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADH-ferric reductase activity associated with dihydropteridine reductase.
    Lee PL; Halloran C; Cross AR; Beutler E
    Biochem Biophys Res Commun; 2000 May; 271(3):788-95. PubMed ID: 10814540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of differentiation on the brush border membrane ferric reductase activity in Caco-2 cells.
    Ekmekcioglu C; Marktl W
    In Vitro Cell Dev Biol Anim; 1998 Oct; 34(9):674-6. PubMed ID: 9794217
    [No Abstract]   [Full Text] [Related]  

  • 8. Characterization and partial purification of a ferrireductase from human duodenal microvillus membranes.
    Riedel HD; Remus AJ; Fitscher BA; Stremmel W
    Biochem J; 1995 Aug; 309 ( Pt 3)(Pt 3):745-8. PubMed ID: 7639688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escherichia coli ferredoxin-NADP+ reductase and oxygen-insensitive nitroreductase are capable of functioning as ferric reductase and of driving the Fenton reaction.
    Takeda K; Sato J; Goto K; Fujita T; Watanabe T; Abo M; Yoshimura E; Nakagawa J; Abe A; Kawasaki S; Niimura Y
    Biometals; 2010 Aug; 23(4):727-37. PubMed ID: 20407804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADH:Fe(III)-chelate reductase of maize roots is an active cytochrome b5 reductase.
    Sparla F; Bagnaresi P; Scagliarini S; Trost P
    FEBS Lett; 1997 Sep; 414(3):571-5. PubMed ID: 9323038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a soluble ferric reductase from Neisseria gonorrhoeae.
    Le Faou AE; Morse SA
    Biol Met; 1991; 4(2):126-31. PubMed ID: 1908693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initial-rate kinetics of the flavin reductase reaction catalysed by human biliverdin-IXbeta reductase (BVR-B).
    Cunningham O; Gore MG; Mantle TJ
    Biochem J; 2000 Jan; 345 Pt 2(Pt 2):393-9. PubMed ID: 10620517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of an NADH-linked cupric reductase activity from the Escherichia coli respiratory chain.
    Rapisarda VA; Montelongo LR; Farías RN; Massa EM
    Arch Biochem Biophys; 1999 Oct; 370(2):143-50. PubMed ID: 10510271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferric iron reduction and iron assimilation in Saccharomyces cerevisiae.
    Anderson GJ; Lesuisse E; Dancis A; Roman DG; Labbe P; Klausner RD
    J Inorg Biochem; 1992 Aug 15-Sep; 47(3-4):249-55. PubMed ID: 1431884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of ferric iron by Listeria monocytogenes and other species of Listeria.
    Deneer HG; Boychuk I
    Can J Microbiol; 1993 May; 39(5):480-5. PubMed ID: 8330259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of a soluble NADPH-dependent Fe(III) reductase from Geobacter sulfurreducens.
    Kaufmann F; Lovley DR
    J Bacteriol; 2001 Aug; 183(15):4468-76. PubMed ID: 11443080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid peroxidation of rabbit small intestinal microvillus membrane vesicles by iron complexes.
    Fodor I; Marx JJ
    Biochim Biophys Acta; 1988 Jul; 961(1):96-102. PubMed ID: 3132985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characterization of the chloroplast ferric chelate oxidoreductase enzyme.
    Solti Á; Müller B; Czech V; Sárvári É; Fodor F
    New Phytol; 2014 May; 202(3):920-928. PubMed ID: 24506824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a membrane-bound NADH-dependent Fe(3+) reductase from the dissimilatory Fe(3+)-reducing bacterium Geobacter sulfurreducens.
    Magnuson TS; Hodges-Myerson AL; Lovley DR
    FEMS Microbiol Lett; 2000 Apr; 185(2):205-11. PubMed ID: 10754249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monocyte-macrophage ferric reductase activity is inhibited by iron and stimulated by cellular differentiation.
    Partridge J; Wallace DF; Raja KB; Dooley JS; Walker AP
    Biochem J; 1998 Dec; 336 ( Pt 3)(Pt 3):541-3. PubMed ID: 9841863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.