These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 8814281)
1. Fatty acids stimulate activity and restore respiratory control in a proton channel mutant of cytochrome c oxidase. Fetter J; Sharpe M; Qian J; Mills D; Ferguson-Miller S; Nicholls P FEBS Lett; 1996 Sep; 393(2-3):155-60. PubMed ID: 8814281 [TBL] [Abstract][Full Text] [Related]
2. G204D, a mutation that blocks the proton-conducting D-channel of the aa3-type cytochrome c oxidase from Rhodobacter sphaeroides. Han D; Morgan JE; Gennis RB Biochemistry; 2005 Sep; 44(38):12767-74. PubMed ID: 16171391 [TBL] [Abstract][Full Text] [Related]
3. Mutations in the putative H-channel in the cytochrome c oxidase from Rhodobacter sphaeroides show that this channel is not important for proton conduction but reveal modulation of the properties of heme a. Lee HM; Das TK; Rousseau DL; Mills D; Ferguson-Miller S; Gennis RB Biochemistry; 2000 Mar; 39(11):2989-96. PubMed ID: 10715119 [TBL] [Abstract][Full Text] [Related]
4. A role for subunit III in proton uptake into the D pathway and a possible proton exit pathway in Rhodobacter sphaeroides cytochrome c oxidase. Mills DA; Tan Z; Ferguson-Miller S; Hosler J Biochemistry; 2003 Jun; 42(24):7410-7. PubMed ID: 12809496 [TBL] [Abstract][Full Text] [Related]
5. Fatty acids as modulators of cytochrome c oxidase in proteoliposomes. Sharpe M; Perin I; Wrigglesworth J; Nicholls P Biochem J; 1996 Dec; 320 ( Pt 2)(Pt 2):557-61. PubMed ID: 8973566 [TBL] [Abstract][Full Text] [Related]
6. The inside pH determines rates of electron and proton transfer in vesicle-reconstituted cytochrome c oxidase. Faxén K; Brzezinski P Biochim Biophys Acta; 2007 May; 1767(5):381-6. PubMed ID: 17466260 [TBL] [Abstract][Full Text] [Related]
7. Phospholipid vesicles containing bovine heart mitochondrial cytochrome c oxidase and subunit III-deficient enzyme: analysis of respiratory control and proton translocating activities. Wilson KS; Prochaska LJ Arch Biochem Biophys; 1990 Nov; 282(2):413-20. PubMed ID: 2173485 [TBL] [Abstract][Full Text] [Related]
8. Possible proton relay pathways in cytochrome c oxidase. Fetter JR; Qian J; Shapleigh J; Thomas JW; García-Horsman A; Schmidt E; Hosler J; Babcock GT; Gennis RB; Ferguson-Miller S Proc Natl Acad Sci U S A; 1995 Feb; 92(5):1604-8. PubMed ID: 7878026 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of inhibition of electron transfer by amino acid replacement K362M in a proton channel of Rhodobacter sphaeroides cytochrome c oxidase. Vygodina TV; Pecoraro C; Mitchell D; Gennis R; Konstantinov AA Biochemistry; 1998 Mar; 37(9):3053-61. PubMed ID: 9485458 [TBL] [Abstract][Full Text] [Related]
10. Action of bovine serum albumin on cytochrome c oxidase activity and proton pumping: a role for fatty acids in enzyme function? Sharpe M; Perin I; Nicholls P FEBS Lett; 1996 Aug; 391(1-2):134-8. PubMed ID: 8706901 [TBL] [Abstract][Full Text] [Related]
11. Role of the pathway through K(I-362) in proton transfer in cytochrome c oxidase from R. sphaeroides. Adelroth P; Gennis RB; Brzezinski P Biochemistry; 1998 Feb; 37(8):2470-6. PubMed ID: 9485395 [TBL] [Abstract][Full Text] [Related]
12. Biophysical and biochemical characterization of reconstituted and purified Rhodobacter sphaeroides cytochrome c oxidase in phospholipid vesicles sheds insight into its functional oligomeric structure. Cvetkov TL; Prochaska LJ Protein Expr Purif; 2007 Dec; 56(2):189-96. PubMed ID: 17910921 [TBL] [Abstract][Full Text] [Related]
13. Surface proton donors for the D-pathway of cytochrome c oxidase in the absence of subunit III. Adelroth P; Hosler J Biochemistry; 2006 Jul; 45(27):8308-18. PubMed ID: 16819830 [TBL] [Abstract][Full Text] [Related]
14. Biochemical and biophysical properties of purified phospholipid vesicles containing bovine heart cytochrome c oxidase. Nguyen XT; Pabarue HA; Geyer RR; Shroyer LA; Estey LA; Parilo MS; Wilson KS; Prochaska LJ Protein Expr Purif; 2002 Oct; 26(1):122-30. PubMed ID: 12356479 [TBL] [Abstract][Full Text] [Related]
15. Aspartate-132 in cytochrome c oxidase from Rhodobacter sphaeroides is involved in a two-step proton transfer during oxo-ferryl formation. Smirnova IA; Adelroth P; Gennis RB; Brzezinski P Biochemistry; 1999 May; 38(21):6826-33. PubMed ID: 10346904 [TBL] [Abstract][Full Text] [Related]
16. C-terminal truncation and histidine-tagging of cytochrome c oxidase subunit II reveals the native processing site, shows involvement of the C-terminus in cytochrome c binding, and improves the assay for proton pumping. Hiser C; Mills DA; Schall M; Ferguson-Miller S Biochemistry; 2001 Feb; 40(6):1606-15. PubMed ID: 11327819 [TBL] [Abstract][Full Text] [Related]
17. The effect of non-esterified fatty acids on the proton-pumping cytochrome c oxidase reconstituted into liposomes. Labonia N; Müller M; Azzi A Biochem J; 1988 Aug; 254(1):139-45. PubMed ID: 2902846 [TBL] [Abstract][Full Text] [Related]
18. Phospholipid vesicles containing bovine heart mitochondrial cytochrome c oxidase exhibit proton translocating activity in the presence of gramicidin. Prochaska LJ; Wilson KS Arch Biochem Biophys; 1991 Oct; 290(1):179-85. PubMed ID: 1716878 [TBL] [Abstract][Full Text] [Related]
19. Control of electron transfer by the electrochemical potential gradient in cytochrome-c oxidase reconstituted into phospholipid vesicles. Sarti P; Malatesta F; Antonini G; Vallone B; Brunori M J Biol Chem; 1990 Apr; 265(10):5554-60. PubMed ID: 2156821 [TBL] [Abstract][Full Text] [Related]
20. A mutation in subunit I of cytochrome oxidase from Rhodobacter sphaeroides results in an increase in steady-state activity but completely eliminates proton pumping. Pawate AS; Morgan J; Namslauer A; Mills D; Brzezinski P; Ferguson-Miller S; Gennis RB Biochemistry; 2002 Nov; 41(45):13417-23. PubMed ID: 12416987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]