These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 8814555)
1. The visco-elasticity of resting intact mammalian (rat) fast muscle fibres. Mutungi G; Ranatunga KW J Muscle Res Cell Motil; 1996 Jun; 17(3):357-64. PubMed ID: 8814555 [TBL] [Abstract][Full Text] [Related]
2. Temperature-dependent changes in the viscoelasticity of intact resting mammalian (rat) fast- and slow-twitch muscle fibres. Mutungi G; Ranatunga KW J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):253-65. PubMed ID: 9490847 [TBL] [Abstract][Full Text] [Related]
3. The effects of ramp stretches on active contractions in intact mammalian fast and slow muscle fibres. Mutungi G; Ranatunga KW J Muscle Res Cell Motil; 2001; 22(2):175-84. PubMed ID: 11519740 [TBL] [Abstract][Full Text] [Related]
4. The viscous, viscoelastic and elastic characteristics of resting fast and slow mammalian (rat) muscle fibres. Mutungi G; Ranatunga KW J Physiol; 1996 Nov; 496 ( Pt 3)(Pt 3):827-36. PubMed ID: 8930847 [TBL] [Abstract][Full Text] [Related]
5. The effects of inorganic phosphate and arsenate on both passive muscle visco-elasticity and maximum Ca2+ activated tension in chemically skinned rat fast and slow twitch muscle fibres. Mutungi G J Muscle Res Cell Motil; 2003; 24(1):65-75. PubMed ID: 12953837 [TBL] [Abstract][Full Text] [Related]
11. Crossbridge and non-crossbridge contributions to tension in lengthening rat muscle: force-induced reversal of the power stroke. Pinniger GJ; Ranatunga KW; Offer GW J Physiol; 2006 Jun; 573(Pt 3):627-43. PubMed ID: 16627571 [TBL] [Abstract][Full Text] [Related]
12. Energy transfer during stress relaxation of contracting frog muscle fibres. Mantovani M; Heglund NC; Cavagna GA J Physiol; 2001 Dec; 537(Pt 3):923-39. PubMed ID: 11744765 [TBL] [Abstract][Full Text] [Related]
13. The contractile response during steady lengthening of stimulated frog muscle fibres. Lombardi V; Piazzesi G J Physiol; 1990 Dec; 431():141-71. PubMed ID: 2100305 [TBL] [Abstract][Full Text] [Related]
14. A cross-bridge mechanism can explain the thixotropic short-range elastic component of relaxed frog skeletal muscle. Campbell KS; Lakie M J Physiol; 1998 Aug; 510 ( Pt 3)(Pt 3):941-62. PubMed ID: 9660904 [TBL] [Abstract][Full Text] [Related]
15. Force responses to fast ramp stretches in stimulated frog skeletal muscle fibres. Bagni MA; Cecchi G; Cecchini E; Colombini B; Colomo F J Muscle Res Cell Motil; 1998 Jan; 19(1):33-42. PubMed ID: 9477375 [TBL] [Abstract][Full Text] [Related]
16. Storage and release of mechanical energy by contracting frog muscle fibres. Cavagna GA; Heglund NC; Harry JD; Mantovani M J Physiol; 1994 Dec; 481 ( Pt 3)(Pt 3):689-708. PubMed ID: 7707236 [TBL] [Abstract][Full Text] [Related]
17. A non-cross-bridge stiffness in activated frog muscle fibers. Bagni MA; Cecchi G; Colombini B; Colomo F Biophys J; 2002 Jun; 82(6):3118-27. PubMed ID: 12023235 [TBL] [Abstract][Full Text] [Related]
18. Sarcomere length dependence of the rate of tension redevelopment and submaximal tension in rat and rabbit skinned skeletal muscle fibres. McDonald KS; Wolff MR; Moss RL J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):607-21. PubMed ID: 9218220 [TBL] [Abstract][Full Text] [Related]
19. Tension responses to sudden length change in stimulated frog muscle fibres near slack length. Ford LE; Huxley AF; Simmons RM J Physiol; 1977 Jul; 269(2):441-515. PubMed ID: 302333 [TBL] [Abstract][Full Text] [Related]
20. Expression of titin isoforms in red and white muscle fibres of carp (Cyprinus carpio L.) exposed to different sarcomere strains during swimming. Spierts IL; Akster HA; Granzier HL J Comp Physiol B; 1997 Nov; 167(8):543-51. PubMed ID: 9404015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]