These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 8814621)

  • 1. The pattern of stimulation influences the amount of oscillatory work done by frog muscle.
    Stevens ED
    J Physiol; 1996 Jul; 494 ( Pt 1)(Pt 1):279-85. PubMed ID: 8814621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The optimal stimulation pattern for skeletal muscle is dependent on muscle length.
    Mela P; Veltink PH; Huijing PA; Salmons S; Jarvis JC
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):85-93. PubMed ID: 12236451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of stimulus duty cycle and cycle frequency on power output during fatigue in rat diaphragm muscle doing oscillatory work.
    Stevens ED; Syme DA
    Can J Physiol Pharmacol; 1993 Dec; 71(12):910-6. PubMed ID: 8180887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of fatigue on the catchlike property in a turtle hindlimb muscle.
    Callister RJ; Reinking RM; Stuart DG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Dec; 189(12):857-66. PubMed ID: 14566421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of pH and stimulus phase on work done by isolated frog sartorius muscle during cyclical contraction.
    Stevens ED
    J Muscle Res Cell Motil; 1988 Aug; 9(4):329-33. PubMed ID: 3265421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation pulse characteristics and electrode configuration determine site of excitation in isolated mammalian skeletal muscle: implications for fatigue.
    Cairns SP; Chin ER; Renaud JM
    J Appl Physiol (1985); 2007 Jul; 103(1):359-68. PubMed ID: 17412789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doublet potentiation during eccentric and concentric contractions of cat soleus muscle.
    Sandercock TG; Heckman CJ
    J Appl Physiol (1985); 1997 Apr; 82(4):1219-28. PubMed ID: 9104859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force response of rat soleus muscle to variable-frequency train stimulation.
    Binder-Macleod SA; Barrish WJ
    J Neurophysiol; 1992 Oct; 68(4):1068-78. PubMed ID: 1432068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pattern of pulses that maximize force output from single human thenar motor units.
    Thomas CK; Johansson RS; Bigland-Ritchie B
    J Neurophysiol; 1999 Dec; 82(6):3188-95. PubMed ID: 10601452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of extent of muscle shortening and heart rate on work from frog heart trabeculae.
    Syme DA
    Am J Physiol; 1993 Aug; 265(2 Pt 2):R310-9. PubMed ID: 8368384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force-frequency relationship and potentiation in mammalian skeletal muscle.
    MacIntosh BR; Willis JC
    J Appl Physiol (1985); 2000 Jun; 88(6):2088-96. PubMed ID: 10846022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relative changes in isometric force and work during fatigue and recovery in isolated toad sartorius muscle.
    Stevens ED; Syme DA
    Can J Physiol Pharmacol; 1989 Dec; 67(12):1544-8. PubMed ID: 2627692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of phase of stimulation on acute damage caused by eccentric contractions in mouse soleus muscle.
    Stevens ED
    J Appl Physiol (1985); 1996 Jun; 80(6):1958-62. PubMed ID: 8806900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of the stimulation pattern on the fatigue of single motor units in adult cats.
    Bevan L; Laouris Y; Reinking RM; Stuart DG
    J Physiol; 1992 Apr; 449():85-108. PubMed ID: 1522528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains.
    Ding J; Wexler AS; Binder-Macleod SA
    J Appl Physiol (1985); 2000 Mar; 88(3):917-25. PubMed ID: 10710386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changing stimulation patterns improves performance during electrically elicited contractions.
    Scott WB; Binder-Macleod SA
    Muscle Nerve; 2003 Aug; 28(2):174-80. PubMed ID: 12872321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatigue and recovery of dynamic and steady-state performance in frog skeletal muscle.
    Syme DA; Tonks DM
    Am J Physiol Regul Integr Comp Physiol; 2004 May; 286(5):R916-26. PubMed ID: 14726426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force enhancement in single skeletal muscle fibres on the ascending limb of the force-length relationship.
    Peterson DR; Rassier DE; Herzog W
    J Exp Biol; 2004 Jul; 207(Pt 16):2787-91. PubMed ID: 15235007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mathematical model that predicts the force-frequency relationship of human skeletal muscle.
    Ding J; Wexler AS; Binder-Macleod SA
    Muscle Nerve; 2002 Oct; 26(4):477-85. PubMed ID: 12362412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The input-output relations of skeletal muscle.
    Kwende MM; Jarvis JC; Salmons S
    Proc Biol Sci; 1995 Aug; 261(1361):193-201. PubMed ID: 7568272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.