These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 8814799)

  • 1. Simulations of circadian system and vigilance during space missions.
    Achermann P; Borbély AA
    Adv Space Biol Med; 1996; 5():201-12. PubMed ID: 8814799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance.
    Dijk DJ; Duffy JF; Czeisler CA
    J Sleep Res; 1992 Jun; 1(2):112-7. PubMed ID: 10607036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time course of neurobehavioral alertness during extended wakefulness in morning- and evening-type healthy sleepers.
    Taillard J; Philip P; Claustrat B; Capelli A; Coste O; Chaumet G; Sagaspe P
    Chronobiol Int; 2011 Jul; 28(6):520-7. PubMed ID: 21797780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain structures and receptors involved in alertness.
    Aston-Jones G
    Sleep Med; 2005 Jun; 6 Suppl 1():S3-7. PubMed ID: 16140243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Cognitive Performance and Subjective Sleepiness Using a Model of Arousal Dynamics.
    Postnova S; Lockley SW; Robinson PA
    J Biol Rhythms; 2018 Apr; 33(2):203-218. PubMed ID: 29671707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of subjective alertness and motivation on human performance independent of circadian and homeostatic regulation.
    Hull JT; Wright KP; Czeisler CA
    J Biol Rhythms; 2003 Aug; 18(4):329-38. PubMed ID: 12932085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sleep and circadian rhythms in space.
    Stampi C
    J Clin Pharmacol; 1994 May; 34(5):518-34. PubMed ID: 8089264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic sleep curtailment, even without extended (>16-h) wakefulness, degrades human vigilance performance.
    McHill AW; Hull JT; Wang W; Czeisler CA; Klerman EB
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):6070-6075. PubMed ID: 29784810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian rhythms, sleep, and performance in space.
    Mallis MM; DeRoshia CW
    Aviat Space Environ Med; 2005 Jun; 76(6 Suppl):B94-107. PubMed ID: 15943202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the interaction between the homeostatic and circadian processes of sleep-wake regulation for the prediction of waking neurobehavioural performance.
    Van Dongen HP; Dinges DF
    J Sleep Res; 2003 Sep; 12(3):181-7. PubMed ID: 12941057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alertness and psychomotor performance levels of marine pilots on an irregular work roster.
    Boudreau P; Lafrance S; Boivin DB
    Chronobiol Int; 2018 Jun; 35(6):773-784. PubMed ID: 29787295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Independence of the circadian rhythm in alertness from the sleep/wake cycle.
    Folkard S; Hume KI; Minors DS; Waterhouse JM; Watson FL
    Nature; 1985 Feb 21-27; 313(6004):678-9. PubMed ID: 3974700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sleep Propensity under Forced Desynchrony in a Model of Arousal State Dynamics.
    Postnova S; Lockley SW; Robinson PA
    J Biol Rhythms; 2016 Oct; 31(5):498-508. PubMed ID: 27432116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of a split sleep-wake schedule on neurobehavioural performance and predictions of performance under conditions of forced desynchrony.
    Kosmadopoulos A; Sargent C; Darwent D; Zhou X; Dawson D; Roach GD
    Chronobiol Int; 2014 Dec; 31(10):1209-17. PubMed ID: 25222348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mismatch between subjective alertness and objective performance under sleep restriction is greatest during the biological night.
    Zhou X; Ferguson SA; Matthews RW; Sargent C; Darwent D; Kennaway DJ; Roach GD
    J Sleep Res; 2012 Feb; 21(1):40-9. PubMed ID: 21564364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diurnal and circadian variation of sleep and alertness in men vs. naturally cycling women.
    Boivin DB; Shechter A; Boudreau P; Begum EA; Ng Ying-Kin NM
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):10980-5. PubMed ID: 27621470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinctive effects of modafinil and d-amphetamine on the homeostatic and circadian modulation of the human waking EEG.
    Chapotot F; Pigeau R; Canini F; Bourdon L; Buguet A
    Psychopharmacology (Berl); 2003 Mar; 166(2):127-38. PubMed ID: 12552359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sleep-wake cycles in rhesus monkeys during Spacelab flight simulations.
    Balzamo E
    J Gravit Physiol; 1995; 2(1):P54-5. PubMed ID: 11538931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. More than a marker: interaction between the circadian regulation of temperature and sleep, age-related changes, and treatment possibilities.
    Van Someren EJ
    Chronobiol Int; 2000 May; 17(3):313-54. PubMed ID: 10841209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-dependent effect of room light exposure in a 5-h advance of the sleep-wake cycle: implications for jet lag.
    Boivin DB; James FO
    J Biol Rhythms; 2002 Jun; 17(3):266-76. PubMed ID: 12054198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.