These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 881492)

  • 1. Structure and function of dioxygenases. One approach to lignin degradation.
    Wood JM; Crawford RL; Münck E; Zimmerman R; Lipscomb JD; Stephens RS; Bromley JW; Que L; Howard JB; Orme-Johnson WH
    J Agric Food Chem; 1977; 25(4):698-704. PubMed ID: 881492
    [No Abstract]   [Full Text] [Related]  

  • 2. Plasmid-mediated degradation of o-phthalate and salicylate by a Moraxella sp.
    Rani M; Prakash D; Sobti RC; Jain RK
    Biochem Biophys Res Commun; 1996 Mar; 220(2):377-81. PubMed ID: 8645313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and overexpression of gibberellin 2-oxidase (GA2ox) in switchgrass (Panicum virgatum L.) for improved plant architecture and reduced biomass recalcitrance.
    Wuddineh WA; Mazarei M; Zhang J; Poovaiah CR; Mann DG; Ziebell A; Sykes RW; Davis MF; Udvardi MK; Stewart CN
    Plant Biotechnol J; 2015 Jun; 13(5):636-47. PubMed ID: 25400275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lytic Polysaccharide Monooxygenases: The Microbial Power Tool for Lignocellulose Degradation.
    Johansen KS
    Trends Plant Sci; 2016 Nov; 21(11):926-936. PubMed ID: 27527668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase.
    Eggert C; Temp U; Dean JF; Eriksson KE
    FEBS Lett; 1996 Aug; 391(1-2):144-8. PubMed ID: 8706903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus.
    Eggert C; Temp U; Eriksson KE
    FEBS Lett; 1997 Apr; 407(1):89-92. PubMed ID: 9141487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Progress in lytic polysaccharide monooxygenase].
    Sun X; Wan J; Cao J; Si Y; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2018 Feb; 34(2):177-187. PubMed ID: 29424132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial enzymes involved in lignin degradation.
    de Gonzalo G; Colpa DI; Habib MH; Fraaije MW
    J Biotechnol; 2016 Oct; 236():110-9. PubMed ID: 27544286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of beta-adrenoceptor antagonists on the hepatic mixed-function oxygenases in the rat [proceedings].
    Ioannides C; Okine L; Parke DV
    Br J Pharmacol; 1979 Nov; 67(3):451P-452P. PubMed ID: 40658
    [No Abstract]   [Full Text] [Related]  

  • 10. Degradation of labelled lignins and veratrylglycerol-beta-guaiacyl ether by Acinetobacter sp.
    Vasudevan N; Mahadevan A
    Ital J Biochem; 1990; 39(5):285-93. PubMed ID: 2128084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of lignolytic and feed-back type enzymes by Phlebia radiata on different media.
    Rogalski J; Fiedurek J; Leonowicz A
    Acta Biol Hung; 2001; 52(1):149-60. PubMed ID: 11396834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flavin-O2 interaction mechanisms and the function of flavin in hydroxylation reactions.
    Hemmerich P
    Ann N Y Acad Sci; 1973; 212():13-26. PubMed ID: 4532474
    [No Abstract]   [Full Text] [Related]  

  • 13. Cytochrome P-450 dependent biotransformation: some recent developments. Introductory remarks: cytochromne P-450 mixed function oxygenases.
    Finlayson MJ; Bellward GD
    Proc West Pharmacol Soc; 1980; 23():1-2. PubMed ID: 7403109
    [No Abstract]   [Full Text] [Related]  

  • 14. Fungal lytic polysaccharide monooxygenases from family AA9: Recent developments and application in lignocelullose breakdown.
    Monclaro AV; Filho EXF
    Int J Biol Macromol; 2017 Sep; 102():771-778. PubMed ID: 28450248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FOLy: an integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds.
    Levasseur A; Piumi F; Coutinho PM; Rancurel C; Asther M; Delattre M; Henrissat B; Pontarotti P; Asther M; Record E
    Fungal Genet Biol; 2008 May; 45(5):638-45. PubMed ID: 18308593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antipyrine as an in vitro probe of mixed function oxidase activity [proceeding].
    Kahn GC; Boobis AR; Blair I; Brodie MJ; Davies DS
    Br J Clin Pharmacol; 1980 Mar; 9(3):284P. PubMed ID: 7362740
    [No Abstract]   [Full Text] [Related]  

  • 17. Fungal secretomics to probe the biological functions of lytic polysaccharide monooxygenases.
    Berrin JG; Rosso MN; Abou Hachem M
    Carbohydr Res; 2017 Aug; 448():155-160. PubMed ID: 28535872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on non-haem ferrous-dependent oxygenases and oxidases.
    Barlow JN; Baldwin JE; Clifton IJ; Gibson E; Hensgens CM; Hajdu J; Hara T; Hassan A; John P; Lloyd MD; Roach PL; Prescott A; Robinson JK; Zhang ZH; Schofield CJ
    Biochem Soc Trans; 1997 Feb; 25(1):86-90. PubMed ID: 9056849
    [No Abstract]   [Full Text] [Related]  

  • 19. Role of the microsomal mixed-function amine oxidase in the oxidation of N,N-disubstituted hydroxylamines.
    Poulsen LL; Kadlubar FF; Ziegler DM
    Arch Biochem Biophys; 1974 Oct; 164(2):774-5. PubMed ID: 4460890
    [No Abstract]   [Full Text] [Related]  

  • 20. Clinical pathophysiology of mixed function oxidase system (MFOS) induction.
    Brockway BF
    West J Nurs Res; 1979; 1(3):256-9. PubMed ID: 261717
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.