These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8815381)

  • 21. Wall correction factors, Pwall, for parallel-plate ionization chambers.
    Buckley LA; Rogers DW
    Med Phys; 2006 Jun; 33(6):1788-96. PubMed ID: 16872086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Beam quality specification for photon beam dosimetry.
    Kosunen A; Rogers DW
    Med Phys; 1993; 20(4):1181-8. PubMed ID: 8413028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams.
    Tzedakis A; Damilakis JE; Mazonakis M; Stratakis J; Varveris H; Gourtsoyiannis N
    Med Phys; 2004 Apr; 31(4):907-13. PubMed ID: 15125009
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of the depth of 50% of maximum ionization, I50, for electron beams by the divided difference method.
    Hoshina M; Shibuya H; Kubo HD; Miura M; Ohashi I; Yoshimura R; Oota S
    Med Phys; 2004 Jul; 31(7):2068-74. PubMed ID: 15305459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cherenkov emission-based external radiotherapy dosimetry: II. Electron beam quality specification and uncertainties.
    Zlateva Y; Muir BR; Seuntjens JP; El Naqa I
    Med Phys; 2019 May; 46(5):2383-2393. PubMed ID: 30706493
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Verification of absorbed dose determined with plane-parallel chambers in clinical electron beams following AAPM Task Group 39 protocol using ferrous sulphate dosimetry.
    Xu Z; Li H; Almond PR; Guan TY
    Med Phys; 1996 Mar; 23(3):377-81. PubMed ID: 8815380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using Monte Carlo methods to commission electron beams: a feasibility study.
    Antolak JA; Bieda MR; Hogstrom KR
    Med Phys; 2002 May; 29(5):771-86. PubMed ID: 12033573
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electron fluence correction factors for conversion of dose in plastic to dose in water.
    Ding GX; Rogers DW; Cygler JE; Mackie TR
    Med Phys; 1997 Feb; 24(2):161-76. PubMed ID: 9048356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of changes in stopping-power ratios with field size on electron beam relative output factors.
    Zhang GG; Rogers DW; Cygler JE; Mackie TR
    Med Phys; 1998 Sep; 25(9):1711-6. PubMed ID: 9775377
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantification of mean energy and photon contamination for accurate dosimetry of high-energy electron beams.
    Sorcini BB; Hyödynmaa S; Brahme A
    Phys Med Biol; 1997 Oct; 42(10):1849-73. PubMed ID: 9364583
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monte Carlo calculations of correction factors for plane-parallel ionization chambers in clinical electron dosimetry.
    Araki F
    Med Phys; 2008 Sep; 35(9):4033-40. PubMed ID: 18841855
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calculations of electron fluence correction factors using the Monte Carlo code PENELOPE.
    Siegbahn EA; Nilsson B; Fernández-Varea JM; Andreo P
    Phys Med Biol; 2003 May; 48(10):1263-75. PubMed ID: 12812445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Replacement correction factors for cylindrical ion chambers in electron beams.
    Wang LL; Rogers DW
    Med Phys; 2009 Oct; 36(10):4600-8. PubMed ID: 19928091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. kQ factors for ionization chamber dosimetry in clinical proton beams.
    Vatnitsky SM; Siebers JV; Miller DW
    Med Phys; 1996 Jan; 23(1):25-31. PubMed ID: 8700030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the wall perturbation correction for a parallel-plate NACP-02 chamber in clinical electron beams.
    Zink K; Wulff J
    Med Phys; 2011 Feb; 38(2):1045-54. PubMed ID: 21452742
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A direct approach for the determination of absorbed dose from electron beams using non-water phantoms.
    Lu XQ; Chin LM
    Med Phys; 1995 Dec; 22(12):2083-91. PubMed ID: 8746714
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solid water as phantom material for dosimetry of electron backscatter using low-energy electron beams: a Monte Carlo evaluation.
    Chow JC; Owrangi AM
    Med Phys; 2009 May; 36(5):1587-94. PubMed ID: 19544774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Which accelerator photon beams are "clinic-like" for reference dosimetry purposes?
    Kalach NI; Rogers DW
    Med Phys; 2003 Jul; 30(7):1546-55. PubMed ID: 12906172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Patient-dependent beam-modifier physics in Monte Carlo photon dose calculations.
    Schach von Wittenau AE; Bergstrom PM; Cox LJ
    Med Phys; 2000 May; 27(5):935-47. PubMed ID: 10841396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reference dosimetry in clinical high-energy electron beams: comparison of the AAPM TG-51 and AAPM TG-21 dosimetry protocols.
    Saiful Huq M; Song H; Andreo P; Houser CJ
    Med Phys; 2001 Oct; 28(10):2077-87. PubMed ID: 11695769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.