BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 8815886)

  • 41. Effect of apomorphine, alpha-methylparatyrosine, haloperidol and reserpine on DOPA production in clonal cell lines (PC-12 and N1E-115).
    Bräutigam M; Laschinski G; Kittner B; Herken H
    Biochem Pharmacol; 1985 Apr; 34(7):941-7. PubMed ID: 3921032
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of R- and S-apomorphine on MPTP-induced nigro-striatal dopamine neuronal loss.
    Grünblatt E; Mandel S; Maor G; Youdim MB
    J Neurochem; 2001 Apr; 77(1):146-56. PubMed ID: 11279270
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vivo mechanisms underlying dopamine release from rat nigrostriatal terminals: II. Studies using potassium and tyramine.
    Fairbrother IS; Arbuthnott GW; Kelly JS; Butcher SP
    J Neurochem; 1990 Jun; 54(6):1844-51. PubMed ID: 2338545
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Psychomotor effects of dopamine infusion under decreased glutathione conditions.
    Shukitt-Hale B; Denisova NA; Strain JG; Joseph JA
    Free Radic Biol Med; 1997; 23(3):412-8. PubMed ID: 9214577
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of glutathione in L-2-chloropropionic acid induced cerebellar granule cell necrosis in the rat.
    Wyatt I; Gyte A; Simpson MG; Widdowson PS; Lock EA
    Arch Toxicol; 1996; 70(11):724-35. PubMed ID: 8896718
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Oxidative stress: a role in the pathogenesis of Parkinson's disease.
    Götz ME; Freyberger A; Riederer P
    J Neural Transm Suppl; 1990; 29():241-9. PubMed ID: 2193108
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis, redox properties, in vivo formation, and neurobehavioral effects of N-acetylcysteinyl conjugates of dopamine: possible metabolites of relevance to Parkinson's disease.
    Shen XM; Xia B; Wrona MZ; Dryhurst G
    Chem Res Toxicol; 1996; 9(7):1117-26. PubMed ID: 8902266
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Disruption of dopamine homeostasis underlies selective neurodegeneration mediated by alpha-synuclein.
    Park SS; Schulz EM; Lee D
    Eur J Neurosci; 2007 Dec; 26(11):3104-12. PubMed ID: 18005066
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Repin-induced neurotoxicity in rodents.
    Robles M; Choi BH; Han B; Santa Cruz K; Kim RC
    Exp Neurol; 1998 Jul; 152(1):129-36. PubMed ID: 9682020
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transformation of dopamine and alpha-methyldopamine by NG108-15 cells: formation of thiol adducts.
    Patel N; Kumagai Y; Unger SE; Fukuto JM; Cho AK
    Chem Res Toxicol; 1991; 4(4):421-6. PubMed ID: 1912328
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deficient peroxide detoxification underlies the susceptibility of oligodendrocyte progenitors to dopamine toxicity.
    Hemdan S; Almazan G
    Neuropharmacology; 2007 May; 52(6):1385-95. PubMed ID: 17400258
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protective effects of xyloketal B against MPP+-induced neurotoxicity in Caenorhabditis elegans and PC12 cells.
    Lu XL; Yao XL; Liu Z; Zhang H; Li W; Li Z; Wang GL; Pang J; Lin Y; Xu Z; Chen L; Pei Z; Zeng J
    Brain Res; 2010 May; 1332():110-9. PubMed ID: 20347725
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Depletion of brain glutathione results in a decrease of glutathione reductase activity; an enzyme susceptible to oxidative damage.
    Barker JE; Heales SJ; Cassidy A; Bolaños JP; Land JM; Clark JB
    Brain Res; 1996 Apr; 716(1-2):118-22. PubMed ID: 8738227
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of nerve growth factor in oxidant homeostasis: glutathione metabolism.
    Pan Z; Perez-Polo R
    J Neurochem; 1993 Nov; 61(5):1713-21. PubMed ID: 7901332
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lithium attenuates dopamine depleting effects of reserpine and tetrabenazine but not that of alpha methyl-p-tyrosine.
    Reches A; Hassan MN; Jackson VR; Fahn S
    Life Sci; 1983 Jul; 33(2):157-60. PubMed ID: 6865653
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dopamine toxicity in neuroblastoma cells: role of glutathione depletion by L-BSO and apoptosis.
    Stokes AH; Lewis DY; Lash LH; Jerome WG; Grant KW; Aschner M; Vrana KE
    Brain Res; 2000 Mar; 858(1):1-8. PubMed ID: 10700589
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of vesicular dopamine in the in vivo stimulation of striatal dopamine transmission by amphetamine: evidence from microdialysis and Fos immunohistochemistry.
    Cadoni C; Pinna A; Russi G; Consolo S; Di Chiara G
    Neuroscience; 1995 Apr; 65(4):1027-39. PubMed ID: 7617159
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pharmacological study on the mixed CCK8/DA meso-nucleus accumbens pathway: evidence for the existence of storage sites containing the two transmitters.
    Studler JM; Reibaud M; Tramu G; Blanc G; Glowinski J; Tassin JP
    Brain Res; 1984 Apr; 298(1):91-7. PubMed ID: 6326949
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of a sulfonium analog of dopamine on the depolarization-induced release of [3H]acetylcholine from mouse striatal slices.
    Turowski B; Szkrybalo M; Anderson K; Miller D; Uretsky N
    Biochem Pharmacol; 1984 Aug; 33(15):2371-6. PubMed ID: 6466358
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Increase of striatal dopamine turnover by drugs: interference with granular storage or receptor blackade?
    Saner A; Pletscher A
    Eur J Pharmacol; 1977 Mar; 42(2):155-60. PubMed ID: 844496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.