These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 8815887)

  • 1. Peptidergic modulation of synaptic transmission in the parabrachial nucleus in vitro: importance of degradative enzymes in regulating synaptic efficacy.
    Saleh TM; Kombian SB; Zidichouski JA; Pittman QJ
    J Neurosci; 1996 Oct; 16(19):6046-55. PubMed ID: 8815887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholecystokinin and neurotensin inversely modulate excitatory synaptic transmission in the parabrachial nucleus in vitro.
    Saleh TM; Kombian SB; Zidichouski JA; Pittman QJ
    Neuroscience; 1997 Mar; 77(1):23-35. PubMed ID: 9044371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurochemical interactions in the parabrachial nucleus mediating visceral inputs to visceral thalamic neurons.
    Saleh TM; Cechetto DF
    Am J Physiol; 1995 Mar; 268(3 Pt 2):R786-95. PubMed ID: 7535012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic actions of neuropeptide FF in the rat parabrachial nucleus: interactions with opioid receptors.
    Chen X; Zidichouski JA; Harris KH; Jhamandas JH
    J Neurophysiol; 2000 Aug; 84(2):744-51. PubMed ID: 10938301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamate receptor subtypes mediate excitatory synaptic responses of rat lateral parabrachial neurons.
    Zidichouski JA; Easaw JC; Jhamandas JH
    Am J Physiol; 1996 May; 270(5 Pt 2):H1557-67. PubMed ID: 8928860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of calcitonin gene-related peptide in pain regulation in the parabrachial nucleus of naive rats and rats with neuropathic pain.
    Wang LL; Wang HB; Fu FH; Yu LC
    Toxicol Appl Pharmacol; 2021 Mar; 414():115428. PubMed ID: 33524449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visceral afferent stimulation-evoked changes in the release of peptides into the parabrachial nucleus in vivo.
    Saleh TM
    Brain Res; 1997 Dec; 778(1):56-63. PubMed ID: 9462877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substance P depresses excitatory synaptic transmission in the nucleus accumbens through dopaminergic and purinergic mechanisms.
    Kombian SB; Ananthalakshmi KV; Parvathy SS; Matowe WC
    J Neurophysiol; 2003 Feb; 89(2):728-37. PubMed ID: 12574450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interdependent regulation of afferent renal nerve activity and renal function: role of transient receptor potential vanilloid type 1, neurokinin 1, and calcitonin gene-related peptide receptors.
    Xie C; Sachs JR; Wang DH
    J Pharmacol Exp Ther; 2008 Jun; 325(3):751-7. PubMed ID: 18364471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vasopressin and amastatin induce V(1)-receptor-mediated suppression of excitatory transmission in the rat parabrachial nucleus.
    Chen X; Pittman QJ
    J Neurophysiol; 1999 Oct; 82(4):1689-96. PubMed ID: 10515959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine depresses glutamatergic synaptic transmission in the rat parabrachial nucleus in vitro.
    Chen X; Kombian SB; Zidichouski JA; Pittman QJ
    Neuroscience; 1999 May; 90(2):457-68. PubMed ID: 10215151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurons containing calcitonin gene-related peptide in the parabrachial nucleus project to the central nucleus of the amygdala.
    Schwaber JS; Sternini C; Brecha NC; Rogers WT; Card JP
    J Comp Neurol; 1988 Apr; 270(3):416-26, 398-9. PubMed ID: 2836477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Action of tachykinins in the rat hippocampus: modulation of inhibitory synaptic transmission.
    Ogier R; Raggenbass M
    Eur J Neurosci; 2003 Jun; 17(12):2639-47. PubMed ID: 12823471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potentiation of NMDA receptor-mediated synaptic transmission at the parabrachial-central amygdala synapses by CGRP in mice.
    Okutsu Y; Takahashi Y; Nagase M; Shinohara K; Ikeda R; Kato F
    Mol Pain; 2017; 13():1744806917709201. PubMed ID: 28604219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical role of calcitonin gene-related peptide 1 receptors in the amygdala in synaptic plasticity and pain behavior.
    Han JS; Li W; Neugebauer V
    J Neurosci; 2005 Nov; 25(46):10717-28. PubMed ID: 16291945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substance P and neurokinin A mediate sensory synaptic transmission in young rat dorsal horn neurons.
    Li P; Zhuo M
    Brain Res Bull; 2001 Jul; 55(4):521-31. PubMed ID: 11543953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pain-related synaptic plasticity in spinal dorsal horn neurons: role of CGRP.
    Bird GC; Han JS; Fu Y; Adwanikar H; Willis WD; Neugebauer V
    Mol Pain; 2006 Sep; 2():31. PubMed ID: 17002803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tachykinins and calcitonin gene-related peptide enhance release of endogenous glutamate and aspartate from the rat spinal dorsal horn slice.
    Kangrga I; Randic M
    J Neurosci; 1990 Jun; 10(6):2026-38. PubMed ID: 1693954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABAB receptors presynaptically modulate excitatory synaptic transmission in the rat supraoptic nucleus in vitro.
    Kombian SB; Zidichouski JA; Pittman QJ
    J Neurophysiol; 1996 Aug; 76(2):1166-79. PubMed ID: 8871228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat.
    Storer RJ; Akerman S; Goadsby PJ
    Br J Pharmacol; 2004 Aug; 142(7):1171-81. PubMed ID: 15237097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.