These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 8816075)
1. The evolution of hexokinases. Ureta T; Medina C; Preller A Arch Biol Med Exp; 1987; 20(3-4):343-57. PubMed ID: 8816075 [TBL] [Abstract][Full Text] [Related]
2. Identification, expression and bioactivity of hexokinase in amphioxus: insights into evolution of vertebrate hexokinase genes. Li M; Gao Z; Wang Y; Wang H; Zhang S Gene; 2014 Feb; 535(2):318-26. PubMed ID: 24262936 [TBL] [Abstract][Full Text] [Related]
3. The hexokinase of the hyperthermophile Thermoproteus tenax. ATP-dependent hexokinases and ADP-dependent glucokinases, teo alternatives for glucose phosphorylation in Archaea. Dörr C; Zaparty M; Tjaden B; Brinkmann H; Siebers B J Biol Chem; 2003 May; 278(21):18744-53. PubMed ID: 12626506 [TBL] [Abstract][Full Text] [Related]
4. Functional organization and evolution of mammalian hexokinases: mutations that caused the loss of catalytic activity in N-terminal halves of type I and type III isozymes. Tsai HJ Arch Biochem Biophys; 1999 Sep; 369(1):149-56. PubMed ID: 10462451 [TBL] [Abstract][Full Text] [Related]
5. Two novel types of hexokinases in the moss Physcomitrella patens. Nilsson A; Olsson T; Ulfstedt M; Thelander M; Ronne H BMC Plant Biol; 2011 Feb; 11():32. PubMed ID: 21320325 [TBL] [Abstract][Full Text] [Related]
6. The comparative isozymology of vertebrate hexokinases. Ureta T Comp Biochem Physiol B; 1982; 71(4):549-55. PubMed ID: 7044667 [TBL] [Abstract][Full Text] [Related]
7. Complete amino acid sequence of the type III isozyme of rat hexokinase, deduced from the cloned cDNA. Schwab DA; Wilson JE Arch Biochem Biophys; 1991 Mar; 285(2):365-70. PubMed ID: 1897938 [TBL] [Abstract][Full Text] [Related]
8. The crystal structure of Trypanosoma cruzi glucokinase reveals features determining oligomerization and anomer specificity of hexose-phosphorylating enzymes. Cordeiro AT; Cáceres AJ; Vertommen D; Concepción JL; Michels PA; Versées W J Mol Biol; 2007 Oct; 372(5):1215-26. PubMed ID: 17761195 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the RokA and HexA broad-substrate-specificity hexokinases from Bacteroides fragilis and their role in hexose and N-acetylglucosamine utilization. Brigham CJ; Malamy MH J Bacteriol; 2005 Feb; 187(3):890-901. PubMed ID: 15659667 [TBL] [Abstract][Full Text] [Related]
10. Differences in substrate specificity and kinetic properties of the recombinant hexokinases HXK1 and HXK2 from Entamoeba histolytica. Kroschewski H; Ortner S; Steipe B; Scheiner O; Wiedermann G; Duchêne M Mol Biochem Parasitol; 2000 Jan; 105(1):71-80. PubMed ID: 10613700 [TBL] [Abstract][Full Text] [Related]
11. Evolution of the type II hexokinase gene by duplication and fusion of the glucokinase gene with conservation of its organization. Kogure K; Shinohara Y; Terada H J Biol Chem; 1993 Apr; 268(12):8422-4. PubMed ID: 8473284 [TBL] [Abstract][Full Text] [Related]
12. Hypothesis: structures, evolution, and ancestor of glucose kinases in the hexokinase family. Kawai S; Mukai T; Mori S; Mikami B; Murata K J Biosci Bioeng; 2005 Apr; 99(4):320-30. PubMed ID: 16233797 [TBL] [Abstract][Full Text] [Related]
13. Isolation and characterization of the discrete N- and C-terminal halves of rat brain hexokinase: retention of full catalytic activity in the isolated C-terminal half. White TK; Wilson JE Arch Biochem Biophys; 1989 Nov; 274(2):375-93. PubMed ID: 2802617 [TBL] [Abstract][Full Text] [Related]
14. Structure of yeast glucokinase, a strongly diverged specific aldo-hexose-phosphorylating isoenzyme. Albig W; Entian KD Gene; 1988 Dec; 73(1):141-52. PubMed ID: 3072253 [TBL] [Abstract][Full Text] [Related]
15. Amino acid sequence homology between yeast hexokinases and rat hexokinase C. Marcus F; Ureta T Biochem Biophys Res Commun; 1986 Sep; 139(2):714-9. PubMed ID: 3533066 [TBL] [Abstract][Full Text] [Related]
16. Subcellular distribution and kinetic properties of cytosolic and non-cytosolic hexokinases in maize seedling roots: implications for hexose phosphorylation. da-Silva WS; Rezende GL; Galina A J Exp Bot; 2001 Jun; 52(359):1191-201. PubMed ID: 11432937 [TBL] [Abstract][Full Text] [Related]
17. Human hexokinase: sequences of amino- and carboxyl-terminal halves are homologous. Nishi S; Seino S; Bell GI Biochem Biophys Res Commun; 1988 Dec; 157(3):937-43. PubMed ID: 3207429 [TBL] [Abstract][Full Text] [Related]
18. Functional organization of mammalian hexokinases: both N- and C-terminal halves of the rat type II isozyme possess catalytic sites. Tsai HJ; Wilson JE Arch Biochem Biophys; 1996 May; 329(1):17-23. PubMed ID: 8619630 [TBL] [Abstract][Full Text] [Related]
20. Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinases PI and PII. Rose M; Albig W; Entian KD Eur J Biochem; 1991 Aug; 199(3):511-8. PubMed ID: 1868842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]