BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 8816289)

  • 1. Microtubules can modulate pseudopod activity from a distance inside macrophages.
    Rosania GR; Swanson JA
    Cell Motil Cytoskeleton; 1996; 34(3):230-45. PubMed ID: 8816289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtubule coils versus the surface membrane cytoskeleton in maintenance and restoration of platelet discoid shape.
    White JG; Rao GH
    Am J Pathol; 1998 Feb; 152(2):597-609. PubMed ID: 9466587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new model of reticulopodial motility and shape: evidence for a microtubule-based motor and an actin skeleton.
    Travis JL; Bowser SS
    Cell Motil Cytoskeleton; 1986; 6(1):2-14. PubMed ID: 3698107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtubules regulate PI-3K activity and recruitment to the phagocytic cup during Fcgamma receptor-mediated phagocytosis in nonelicited macrophages.
    Khandani A; Eng E; Jongstra-Bilen J; Schreiber AD; Douda D; Samavarchi-Tehrani P; Harrison RE
    J Leukoc Biol; 2007 Aug; 82(2):417-28. PubMed ID: 17502337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of drugs affecting microtubular assembly on microtubules, phospholipid synthesis and physiological indices (signalling, growth, motility and phagocytosis) in Tetrahymena pyriformis.
    Kovács P; Csaba G
    Cell Biochem Funct; 2006; 24(5):419-29. PubMed ID: 15912561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between microtubule dynamics and lamellipodium formation revealed by direct imaging of microtubules in cells treated with nocodazole or taxol.
    Mikhailov A; Gundersen GG
    Cell Motil Cytoskeleton; 1998; 41(4):325-40. PubMed ID: 9858157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of microtubules in cell shape and pigment distribution in spreading erythrophores.
    Ochs RL
    Eur J Cell Biol; 1982 Oct; 28(2):226-32. PubMed ID: 7173222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfilament and microtubule organization and dynamics in process extension by central glia-4 oligodendrocytes: evidence for a microtubule organizing center.
    Rumsby M; Afsari F; Stark M; Hughson E
    Glia; 2003 Apr; 42(2):118-29. PubMed ID: 12655596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of actin filaments and microtubules in hepatocyte spheroid self-assembly.
    Tzanakakis ES; Hansen LK; Hu WS
    Cell Motil Cytoskeleton; 2001 Mar; 48(3):175-89. PubMed ID: 11223949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nocodazole, vinblastine and taxol at low concentrations affect fibroblast locomotion and saltatory movements of organelles.
    Grigoriev IS; Chernobelskaya AA; Vorobjev IA
    Membr Cell Biol; 1999; 13(1):23-48. PubMed ID: 10661468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordination of microtubules and the actin cytoskeleton is important in osteoclast function, but calcitonin disrupts sealing zones without affecting microtubule networks.
    Okumura S; Mizoguchi T; Sato N; Yamaki M; Kobayashi Y; Yamauchi H; Ozawa H; Udagawa N; Takahashi N
    Bone; 2006 Oct; 39(4):684-93. PubMed ID: 16774853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of microtubules in the regulation of neuronal growth cone morphologic remodeling.
    Gallo G
    J Neurobiol; 1998 May; 35(2):121-40. PubMed ID: 9581969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological study of fibroblasts treated with cytochalasin D and colchicine using a confocal laser scanning microscopy.
    Ujihara Y; Miyazaki H; Wada S
    J Physiol Sci; 2008 Dec; 58(7):499-506. PubMed ID: 18928641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of regulation of pseudopodial activity by the microtubule system.
    Bershadsky AD; Vasiliev JM
    Symp Soc Exp Biol; 1993; 47():353-73. PubMed ID: 8165577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active surface transport of metabotropic glutamate receptors through binding to microtubules and actin flow.
    Serge A; Fourgeaud L; Hemar A; Choquet D
    J Cell Sci; 2003 Dec; 116(Pt 24):5015-22. PubMed ID: 14625395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity of fibroblasts and their cytoskeletons to substratum topographies: topographic guidance and topographic compensation by micromachined grooves of different dimensions.
    Oakley C; Jaeger NA; Brunette DM
    Exp Cell Res; 1997 Aug; 234(2):413-24. PubMed ID: 9260912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EB1, a protein which interacts with the APC tumour suppressor, is associated with the microtubule cytoskeleton throughout the cell cycle.
    Morrison EE; Wardleworth BN; Askham JM; Markham AF; Meredith DM
    Oncogene; 1998 Dec; 17(26):3471-7. PubMed ID: 10030671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Microtubules suppress blebbing and stimulate lamellae extension in spreading fibroblasts].
    Tvorogova AV; Vorob'ev IA
    Tsitologiia; 2012; 54(10):742-53. PubMed ID: 23285727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of microtubules with peroxisomes. Tubular and spherical peroxisomes in HepG2 cells and their alterations induced by microtubule-active drugs.
    Schrader M; Burkhardt JK; Baumgart E; Lüers G; Spring H; Völkl A; Fahimi HD
    Eur J Cell Biol; 1996 Jan; 69(1):24-35. PubMed ID: 8825021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mycobacteria directly induce cytoskeletal rearrangements for macrophage spreading and polarization through TLR2-dependent PI3K signaling.
    Lasunskaia EB; Campos MN; de Andrade MR; Damatta RA; Kipnis TL; Einicker-Lamas M; Da Silva WD
    J Leukoc Biol; 2006 Dec; 80(6):1480-90. PubMed ID: 17005905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.