BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 8817306)

  • 1. Intensity-dependent peak shift in cochlear transfer functions at the cellular level, its elimination by sound exposure, and its possible underlying mechanisms.
    Zhang M; Zwislocki JJ
    Hear Res; 1996 Jul; 96(1-2):46-58. PubMed ID: 8817306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological and functional preservation of the outer hair cells from noise trauma by sound conditioning.
    Canlon B; Fransson A
    Hear Res; 1995 Apr; 84(1-2):112-24. PubMed ID: 7642444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cochlear mechanisms of frequency and intensity coding. I. The place code for pitch.
    Chatterjee M; Zwislocki JJ
    Hear Res; 1997 Sep; 111(1-2):65-75. PubMed ID: 9307312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced cochlear responses after sound exposure.
    Szymko YM; Zwislocki JJ; Hertig L
    Hear Res; 1997 Aug; 110(1-2):164-78. PubMed ID: 9282899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corresponding effects of acoustic fatigue on the cochlear microphonic and the compound action potential.
    Pierson MG; Møller AR
    Hear Res; 1982 Jan; 6(1):61-82. PubMed ID: 7054136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microphonic and DPOAE measurements suggest a micromechanical mechanism for the 'bounce' phenomenon following low-frequency tones.
    Kirk DL; Moleirinho A; Patuzzi RB
    Hear Res; 1997 Oct; 112(1-2):69-86. PubMed ID: 9367230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large endolymphatic potentials from low-frequency and infrasonic tones in the guinea pig.
    Salt AN; Lichtenhan JT; Gill RM; Hartsock JJ
    J Acoust Soc Am; 2013 Mar; 133(3):1561-71. PubMed ID: 23464026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The potential use of low-frequency tones to locate regions of outer hair cell loss.
    Kamerer AM; Diaz FJ; Peppi M; Chertoff ME
    Hear Res; 2016 Dec; 342():39-47. PubMed ID: 27677389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of continuous versus interrupted noise exposures on distortion product otoacoustic emissions in guinea pigs.
    Chang KW; Norton SJ
    Hear Res; 1996 Jul; 96(1-2):1-12. PubMed ID: 8817301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in Guinea pig cochlear hair cells after sound conditioning and noise exposure.
    Zuo H; Cui B; She X; Wu M
    J Occup Health; 2008; 50(5):373-9. PubMed ID: 18654041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-frequency sound exposure causes reversible long-term changes of cochlear transfer characteristics.
    Drexl M; Otto L; Wiegrebe L; Marquardt T; Gürkov R; Krause E
    Hear Res; 2016 Feb; 332():87-94. PubMed ID: 26706707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loud sound-induced changes in cochlear mechanics.
    Fridberger A; Zheng J; Parthasarathi A; Ren T; Nuttall A
    J Neurophysiol; 2002 Nov; 88(5):2341-8. PubMed ID: 12424275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evoked-potential thresholds and cubic distortion product otoacoustic emissions in the chinchilla following carboplatin treatment and noise exposure.
    Jock BM; Hamernik RP; Aldrich LG; Ahroon WA; Petriello KL; Johnson AR
    Hear Res; 1996 Jul; 96(1-2):179-90. PubMed ID: 8817317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of direct current on dc receptor potentials from cochlear inner hair cells in the guinea pig.
    Nuttall AL
    J Acoust Soc Am; 1985 Jan; 77(1):165-75. PubMed ID: 3973211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Otoacoustic emissions without somatic motility: can stereocilia mechanics drive the mammalian cochlea?
    Liberman MC; Zuo J; Guinan JJ
    J Acoust Soc Am; 2004 Sep; 116(3):1649-55. PubMed ID: 15478431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustical modulation of electrically evoked otoacoustic emission in intact gerbil cochlea.
    Ren T; Nuttall AL
    Hear Res; 1998 Jun; 120(1-2):7-16. PubMed ID: 9667426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells.
    Russell IJ; Sellick PM
    J Physiol; 1983 May; 338():179-206. PubMed ID: 6875955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brief report: the cochlear microphonic as an indication of outer hair cell function.
    Withnell RH
    Ear Hear; 2001 Feb; 22(1):75-7. PubMed ID: 11271978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cochlear precursors of neural pitch and loudness codes.
    Zwislocki JJ
    Ann Otol Rhinol Laryngol Suppl; 1995 Sep; 166():12-5. PubMed ID: 7668600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some dualistic properties of the cochlear microphonic.
    Pierson M; Møller A
    Hear Res; 1980 Mar; 2(2):135-49. PubMed ID: 7364669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.