These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 8817367)

  • 1. A quasi-linear constitutive relation for arterial wall materials.
    Demiray H
    J Biomech; 1996 Aug; 29(8):1011-4. PubMed ID: 8817367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Waves in initially stressed fluid-filled thick tubes.
    Demiray H
    J Biomech; 1997 Mar; 30(3):273-6. PubMed ID: 9119827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear and Nonlinear Viscoelastic Arterial Wall Models: Application on Animals.
    Ghigo AR; Wang XF; Armentano R; Fullana JM; Lagrée PY
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27685359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of shear stress on solitary waves in arteries.
    Demiray H
    Bull Math Biol; 1997 Sep; 59(5):993-1012. PubMed ID: 9281908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constituent-based quasi-linear viscoelasticity: a revised quasi-linear modelling framework to capture nonlinear viscoelasticity in arteries.
    Giudici A; van der Laan KWF; van der Bruggen MM; Parikh S; Berends E; Foulquier S; Delhaas T; Reesink KD; Spronck B
    Biomech Model Mechanobiol; 2023 Oct; 22(5):1607-1623. PubMed ID: 37129690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A non-Newtonian fluid model for blood flow through arteries under stenotic conditions.
    Misra JC; Patra MK; Misra SC
    J Biomech; 1993 Sep; 26(9):1129-41. PubMed ID: 8408094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear and nonlinear one-dimensional models of pulse wave transmission at high Womersley numbers.
    Reuderink PJ; Hoogstraten HW; Sipkema P; Hillen B; Westerhof N
    J Biomech; 1989; 22(8-9):819-27. PubMed ID: 2613717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of initial stresses on the wave propagation in arteries.
    Misra JC; Choudhury KR
    J Math Biol; 1983; 18(1):53-67. PubMed ID: 6631263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of dispersion of fiber orientation on the mechanical property of the arterial wall.
    Ren JS
    J Theor Biol; 2012 May; 301():153-60. PubMed ID: 22391392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscoelastic dynamic arterial response.
    Charalambous HP; Roussis PC; Giannakopoulos AE
    Comput Biol Med; 2017 Oct; 89():337-354. PubMed ID: 28858648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A description of arterial wall mechanics using limiting chain extensibility constitutive models.
    Horgan CO; Saccomandi G
    Biomech Model Mechanobiol; 2003 Apr; 1(4):251-66. PubMed ID: 14586694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic response of arterial walls in vivo.
    Misra JC; Chakravarty S
    J Biomech; 1982; 15(4):317-24. PubMed ID: 7096386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wave propagation through a newtonian fluid contained within a thick-walled, viscoelastic tube.
    Ox RH
    Biophys J; 1968 Jun; 8(6):691-709. PubMed ID: 5699803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear guided wave propagation in prestressed plates.
    Pau A; Lanza di Scalea F
    J Acoust Soc Am; 2015 Mar; 137(3):1529-40. PubMed ID: 25786963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solutions of the Maxwell viscoelastic equations for displacement and stress distributions within the arterial wall.
    Hodis S; Zamir M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021914. PubMed ID: 18850872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear elastic analysis of blood vessels.
    Wu SG; Lee GC; Tseng NT
    J Biomech Eng; 1984 Nov; 106(4):376-83. PubMed ID: 6513535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear separation of forward and backward running waves in elastic conduits.
    Stergiopulos N; Tardy Y; Meister JJ
    J Biomech; 1993 Feb; 26(2):201-9. PubMed ID: 8429061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the third- and fourth-order constants of incompressible isotropic elasticity.
    Destrade M; Ogden RW
    J Acoust Soc Am; 2010 Dec; 128(6):3334-43. PubMed ID: 21218867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mixed finite element formulation for a non-linear, transversely isotropic material model for the cardiac tissue.
    Thorvaldsen T; Osnes H; Sundnes J
    Comput Methods Biomech Biomed Engin; 2005 Dec; 8(6):369-79. PubMed ID: 16393874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.