BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 8817490)

  • 1. Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection.
    Camilli A; Mekalanos JJ
    Mol Microbiol; 1995 Nov; 18(4):671-83. PubMed ID: 8817490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the Vibrio cholerae El Tor lipase operon lipAB and a protease gene downstream of the hly region.
    Ogierman MA; Fallarino A; Riess T; Williams SG; Attridge SR; Manning PA
    J Bacteriol; 1997 Nov; 179(22):7072-80. PubMed ID: 9371455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of genetic recombination as a reporter of gene expression.
    Camilli A; Beattie DT; Mekalanos JJ
    Proc Natl Acad Sci U S A; 1994 Mar; 91(7):2634-8. PubMed ID: 8146167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IVET and RIVET: use of gene fusions to identify bacterial virulence factors specifically induced in host tissues.
    Slauch JM; Camilli A
    Methods Enzymol; 2000; 326():73-96. PubMed ID: 11036635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Second-generation recombination-based in vivo expression technology for large-scale screening for Vibrio cholerae genes induced during infection of the mouse small intestine.
    Osorio CG; Crawford JA; Michalski J; Martinez-Wilson H; Kaper JB; Camilli A
    Infect Immun; 2005 Feb; 73(2):972-80. PubMed ID: 15664940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleotide sequence and spatiotemporal expression of the Vibrio cholerae vieSAB genes during infection.
    Lee SH; Angelichio MJ; Mekalanos JJ; Camilli A
    J Bacteriol; 1998 May; 180(9):2298-305. PubMed ID: 9573178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filamentous phage integration requires the host recombinases XerC and XerD.
    Huber KE; Waldor MK
    Nature; 2002 Jun; 417(6889):656-9. PubMed ID: 12050668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of RNA arbitrarily primed-PCR fingerprinting to identify Vibrio cholerae genes differentially expressed in the host following infection.
    Chakrabortty A; Das S; Majumdar S; Mukhopadhyay K; Roychoudhury S; Chaudhuri K
    Infect Immun; 2000 Jul; 68(7):3878-87. PubMed ID: 10858198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pepA, a gene mediating pH regulation of virulence genes in Vibrio cholerae.
    Behari J; Stagon L; Calderwood SB
    J Bacteriol; 2001 Jan; 183(1):178-88. PubMed ID: 11114915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of both acfA and acfD transcription by Vibrio cholerae ToxT requires binding to two centrally located DNA sites in an inverted repeat conformation.
    Withey JH; DiRita VJ
    Mol Microbiol; 2005 May; 56(4):1062-77. PubMed ID: 15853890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of Vibrio cholerae virulence genes in response to environmental signals.
    Peterson KM
    Curr Issues Intest Microbiol; 2002 Sep; 3(2):29-38. PubMed ID: 12400636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of global transcription responses allows identification of Vibrio cholerae genes differentially expressed following infection.
    Das S; Chakrabortty A; Banerjee R; Roychoudhury S; Chaudhuri K
    FEMS Microbiol Lett; 2000 Sep; 190(1):87-91. PubMed ID: 10981695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the Vibrio cholerae vexAB and vexCD efflux systems.
    Bina JE; Provenzano D; Wang C; Bina XR; Mekalanos JJ
    Arch Microbiol; 2006 Sep; 186(3):171-81. PubMed ID: 16804679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms of virstatin resistance by non-O1/non-O139 strains of Vibrio cholerae.
    Shakhnovich EA; Sturtevant D; Mekalanos JJ
    Mol Microbiol; 2007 Dec; 66(6):1331-41. PubMed ID: 17986190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic diversity and virulence potential of environmental Vibrio cholerae population in a cholera-endemic area.
    Faruque SM; Chowdhury N; Kamruzzaman M; Dziejman M; Rahman MH; Sack DA; Nair GB; Mekalanos JJ
    Proc Natl Acad Sci U S A; 2004 Feb; 101(7):2123-8. PubMed ID: 14766976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae.
    Kovacikova G; Lin W; Skorupski K
    Mol Microbiol; 2005 Jul; 57(2):420-33. PubMed ID: 15978075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A study of the prevalence of regulatory genes controlling virulence gene expression among Vibrio choleraeeltor biovariant strains varying in their pandemic potential].
    Smirnova NI; Nefedov KS; Osin AV; Livanova LF; Krasnov IaM
    Mol Gen Mikrobiol Virusol; 2007; (1):15-22. PubMed ID: 17354604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Vibrio cholerae FlgM homologue is an anti-sigma28 factor that is secreted through the sheathed polar flagellum.
    Correa NE; Barker JR; Klose KE
    J Bacteriol; 2004 Jul; 186(14):4613-9. PubMed ID: 15231794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Genome-Wide Screen Reveals that the Vibrio cholerae Phosphoenolpyruvate Phosphotransferase System Modulates Virulence Gene Expression.
    Wang Q; Millet YA; Chao MC; Sasabe J; Davis BM; Waldor MK
    Infect Immun; 2015 Sep; 83(9):3381-95. PubMed ID: 26056384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chimeric recombinases with designed DNA sequence recognition.
    Akopian A; He J; Boocock MR; Stark WM
    Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8688-91. PubMed ID: 12837939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.