These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 8817890)

  • 1. Is the pressure difference between the oval and round windows the effective acoustic stimulus for the cochlea?
    Voss SE; Rosowski JJ; Peake WT
    J Acoust Soc Am; 1996 Sep; 100(3):1602-16. PubMed ID: 8817890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sound pressures in the basal turn of the cat cochlea.
    Nedzelnitsky V
    J Acoust Soc Am; 1980 Dec; 68(6):1676-89. PubMed ID: 7462467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic impedances at the oval window, and sound pressure transformation of the middle ear in Norwegian cattle.
    Kringlebotn M
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):1094-104. PubMed ID: 11008812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of forward (ear-canal) and reverse (round-window) sound stimulation of the cochlea.
    Stieger C; Rosowski JJ; Nakajima HH
    Hear Res; 2013 Jul; 301():105-14. PubMed ID: 23159918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of cochlear window fixation on air- and bone-conduction thresholds.
    Nageris BI; Attias J; Shemesh R; Hod R; Preis M
    Otol Neurotol; 2012 Dec; 33(9):1679-84. PubMed ID: 23150097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Middle-ear transmission: acoustic versus ossicular coupling in cat and human.
    Peake WT; Rosowski JJ; Lynch TJ
    Hear Res; 1992 Jan; 57(2):245-68. PubMed ID: 1733916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cochlear Implant Electrode Effect on Sound Energy Transfer Within the Cochlea During Acoustic Stimulation.
    Greene NT; Mattingly JK; Jenkins HA; Tollin DJ; Easter JR; Cass SP
    Otol Neurotol; 2015 Sep; 36(9):1554-61. PubMed ID: 26333018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Comparison of differental intracochlear pressures between round window stimulation and ear canal stimulation].
    Wang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec; 29(6):1109-13. PubMed ID: 23469540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cochlear mechanisms at low frequencies in the guinea pig.
    Franke R; Dancer A
    Arch Otorhinolaryngol; 1982; 234(2):213-8. PubMed ID: 7092710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Electrical responses recorded from the round window of the cat cochlea].
    Bakaĭ EA; Chaĭka SP
    Neirofiziologiia; 1979; 11(2):151-7. PubMed ID: 440488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of middle ear mechanics and application to diseased and reconstructed ears.
    Merchant SN; Ravicz ME; Puria S; Voss SE; Whittemore KR; Peake WT; Rosowski JJ
    Am J Otol; 1997 Mar; 18(2):139-54. PubMed ID: 9093668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limits on normal cochlear 'third' windows provided by previous investigations of additional sound paths into and out of the cat inner ear.
    Rosowski JJ; Bowers P; Nakajima HH
    Hear Res; 2018 Mar; 360():3-13. PubMed ID: 29169906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic stimulation of the human round window by laser-induced nonlinear optoacoustics.
    Lengert L; Tomanek M; Ghoncheh M; Lohmann H; Prenzler N; Kalies S; Johannsmeier S; Ripken T; Heisterkamp A; Maier H
    Sci Rep; 2024 Apr; 14(1):8214. PubMed ID: 38589426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Third-window vibroplasty with an active middle ear implant: assessment of physiologic responses in a model of stapes fixation in Chinchilla lanigera.
    Lupo JE; Koka K; Jenkins HA; Tollin DJ
    Otol Neurotol; 2012 Apr; 33(3):425-31. PubMed ID: 22334156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Stapes Velocity to Estimate the Efficacy of Mechanical Stimulation of the Round Window With an Active Middle Ear Implant.
    Tollin DJ; Koka K; Peacock J
    Otol Neurotol; 2023 Jun; 44(5):e311-e318. PubMed ID: 36962010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Impact of a Cochlear Implant Electrode Array on the Middle Ear Transfer Function.
    Pazen D; Anagiotos A; Nünning M; Gostian AO; Ortmann M; Beutner D
    Ear Hear; 2017; 38(4):e241-e255. PubMed ID: 28207578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Acoustic Stimulation at the Lateral Canal: An Alternative Route to the Inner Ear?
    Verhaert N; Walraevens J; Desloovere C; Wouters J; Gérard JM
    PLoS One; 2016; 11(8):e0160819. PubMed ID: 27500399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ear canal acoustic and round window electrical correlates of 2f1-f2 distortion generated in the cochlea.
    Kemp DT; Brown AM
    Hear Res; 1984 Jan; 13(1):39-46. PubMed ID: 6706861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.