These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 8817917)
21. A highly pathogenic strain of Bacillus thuringiensis serovar kurstaki in lepidopteran pests. Kati H; Sezen K; Nalcacioglu R; Demirbag Z J Microbiol; 2007 Dec; 45(6):553-7. PubMed ID: 18176540 [TBL] [Abstract][Full Text] [Related]
22. Residual activity of Bacillus thuringiensis serovars medellin and jegathesan on Culex pipiens and Aedes aegypti larvae. Thiéry I; Fouque F; Gaven B; Lagneau C J Am Mosq Control Assoc; 1999 Sep; 15(3):371-9. PubMed ID: 10480130 [TBL] [Abstract][Full Text] [Related]
23. Comparative delta-endotoxins of Bacillus thuringiensis against mosquito vectors (Aedes aegypti and Culex pipiens). Lonc E; Kucińska J; Rydzanicz K Acta Microbiol Pol; 2003; 52(3):293-300. PubMed ID: 14743982 [TBL] [Abstract][Full Text] [Related]
24. Environmental distribution and diversity of Bacillus thuringiensis in Spain. Iriarte J; Bel Y; Ferrandis MD; Andrew R; Murillo J; Ferré J; Caballero P Syst Appl Microbiol; 1998 Mar; 21(1):97-106. PubMed ID: 9741114 [TBL] [Abstract][Full Text] [Related]
25. Phenotypic and genotypic features of new autoagglutinating Bacillus thuringiensis strains. Chaves JQ; Cavados CF; Rabinovitch L J Invertebr Pathol; 2008 May; 98(1):85-92. PubMed ID: 18304571 [TBL] [Abstract][Full Text] [Related]
26. Laboratory evaluation of Bacillus thuringiensis (Vectobac WDG) against mosquito larvae, Culex pipiens and Culiseta longiareolata. Boudjelida H; Aïssaoui L; Bouaziz A; Smagghe G; Soltani N Commun Agric Appl Biol Sci; 2008; 73(3):603-9. PubMed ID: 19226801 [TBL] [Abstract][Full Text] [Related]
27. Characterisation and toxicity of Bacillus thuringiensis strains from hazelnut pests and fields. Sezen K; Kati H; Muratoglu H; Demirbag Z Pest Manag Sci; 2010 May; 66(5):543-8. PubMed ID: 20024949 [TBL] [Abstract][Full Text] [Related]
28. Characterization & larvicidal activity of indigenous isolates of Bacillus sphaericus from natural breeding habitats. Manonmani AM; Hoti SL; Balaraman K Indian J Med Res; 1990 May; 91():223-7. PubMed ID: 1975802 [TBL] [Abstract][Full Text] [Related]
30. Entomopathogenic spore-formers from soil samples of mosquito habitats in northern Nigeria. Weiser J; Prasertphon S Zentralbl Mikrobiol; 1984; 139(1):49-55. PubMed ID: 6426190 [TBL] [Abstract][Full Text] [Related]
31. Diversity of Bacillus thuringiensis strains isolated from citrus orchards in spain and evaluation of their insecticidal activity against Ceratitis capitata. Vidal-Quist JC; Castañera P; González-Cabrera J J Microbiol Biotechnol; 2009 Aug; 19(8):749-59. PubMed ID: 19734711 [TBL] [Abstract][Full Text] [Related]
32. Characterization of Bacillus thuringiensis soil isolates from Cuba, with insecticidal activity against mosquitoes. González A; Díaz R; Díaz M; Borrero Y; Bruzón RY; Carreras B; Gato R Rev Biol Trop; 2011 Sep; 59(3):1007-16. PubMed ID: 22017108 [TBL] [Abstract][Full Text] [Related]
33. Bacillus thuringiensis associated with faeces of the Kerama-jika, Cervus nippon keramae, a wild deer indigenous to the Ryukyus, Japan. Ohba M; Lee DH J Basic Microbiol; 2003; 43(2):158-62. PubMed ID: 12746858 [TBL] [Abstract][Full Text] [Related]
34. Bacillus thuringiensis soil populations naturally occurring in the Ryukyus, a subtropic region of Japan. Ohba M; Wasano N; Mizuki E Microbiol Res; 2000 Apr; 155(1):17-22. PubMed ID: 10830895 [TBL] [Abstract][Full Text] [Related]
35. Microbial ecology of Bacillus thuringiensis: fecal populations recovered from wildlife in Korea. Lee DH; Cha IH; Woo DS; Ohba M Can J Microbiol; 2003 Jul; 49(7):465-71. PubMed ID: 14569287 [TBL] [Abstract][Full Text] [Related]
36. Extended effect of Bacillus thuringiensis H-14 on Culex pipiens adults surviving larval treatment. Hafez GA J Egypt Soc Parasitol; 2000 Aug; 30(2):377-86. PubMed ID: 10946499 [TBL] [Abstract][Full Text] [Related]
37. Isolation and characterization of entomopathogenic bacteria from soil samples from the western region of Cuba. González A; Rodríguez G; Bruzón RY; Díaz M; Companionis A; Menéndez Z; Gato R J Vector Ecol; 2013 Jun; 38(1):46-52. PubMed ID: 23701606 [TBL] [Abstract][Full Text] [Related]
38. [The effect of infection by the entomopathogenic bacterium Bacillus thuringiensis on the spread of microsporidia in an inversion-polymorphic population of the malarial mosquito Anopheles messeae (Diptera: Culicidae)]. Burlak VA; Gordeev MI Parazitologiia; 1998; 32(3):264-7. PubMed ID: 9702802 [TBL] [Abstract][Full Text] [Related]
39. Assessment of the efficacy of Japanese Bacillus thuringiensis isolates against the cigarette beetle, Lasioderma serricorne (Coleoptera: Anobiidae). Tsuchiya S; Kasaishi Y; Harada H; Ichimatsu T; Saitoh H; Mizuki E; Ohba M J Invertebr Pathol; 2002 Oct; 81(2):122-6. PubMed ID: 12445796 [TBL] [Abstract][Full Text] [Related]
40. Synergism between wild-type Bacillus thuringiensis subsp. israelensis and B. sphaericus strains: a study based on isobolographic analysis and histopathology. Sreshty MA; Kumar KP; Murty US Acta Trop; 2011 Apr; 118(1):14-20. PubMed ID: 21211506 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]