BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 8817972)

  • 41. Development of a non-pulsatile permanent rotary blood pump.
    Nose Y; Kawahito K
    Eur J Cardiothorac Surg; 1997 Apr; 11 Suppl():S32-8. PubMed ID: 9271179
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Performance of a new implantable cardiac assist centrifugal pump.
    Tevaearai HT; Mueller XM; Jegger D; Augsburger M; Burki M; von Segesser LK
    Artif Organs; 2001 Jan; 25(1):67-9. PubMed ID: 11167564
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The hemodynamic effects of mechanical prosthetic valve type and orientation on fluid mechanical energy loss and pressure drop in in vitro models of ventricular hypertrophy.
    Travis BR; Heinrich RS; Ensley AE; Gibson DE; Hashim S; Yoganathan AP
    J Heart Valve Dis; 1998 May; 7(3):345-54. PubMed ID: 9651851
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pulsatile versus nonpulsatile flow to maintain the equivalent coronary blood flow in the fibrillating heart.
    Jung JS; Son HS; Lim CH; Sun K
    ASAIO J; 2007; 53(6):785-90. PubMed ID: 18043166
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Estimation of cardiac function with rotary blood pump.
    Nakata K; Akiyama K; Sankai Y; Shiono M; Orime Y; Saito Y; Hata M; Sezai A; Minami T; Negishi N
    Ann Thorac Cardiovasc Surg; 2007 Aug; 13(4):240-6. PubMed ID: 17717499
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pressures generated within the chambers of the MagScrew TAH: an in vitro study.
    Flick CR; Weber S; Luangphakdy V; Klatte RS; Fukamachi K; Smith WA
    ASAIO J; 2008; 54(1):58-63. PubMed ID: 18204317
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impact of the postpump resistance on pressure-flow waveform and hemodynamic energy level in a neonatal pulsatile centrifugal pump.
    Wang S; Haines N; Richardson JS; Dasse KA; Undar A
    ASAIO J; 2009; 55(3):277-81. PubMed ID: 19357498
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of rotary blood pump pulsatility on potential parameters of blood compatibility and thrombosis in inflow cannula tips.
    Wong KC; Büsen M; Benzinger C; Gäng R; Bezema M; Greatrex N; Schmitz-Rode T; Steinseifer U
    Int J Artif Organs; 2014 Dec; 37(12):875-87. PubMed ID: 25450321
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Basic performance of a miniature intraventricular axial pump.
    Umezu M; Ohtake Y; Sakata K; Fujimoto T; Yamazaki K; Koyanagi H; Iiyama H; Mori T; Higuchi K
    Artif Organs; 1996 Jun; 20(6):689-93. PubMed ID: 8817979
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of left ventricular assist device performance and hydraulic force in a complete mock circulation loop.
    Timms D; Hayne M; Tan A; Pearcy M
    Artif Organs; 2005 Jul; 29(7):573-80. PubMed ID: 15982286
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of four different pediatric 10F aortic cannulae during pulsatile versus nonpulsatile perfusion in a simulated neonatal model of cardiopulmonary bypass.
    Undar A; Ji B; Rider A; Lukic B; Kunselman AR; Weiss WJ; Myers JL
    ASAIO J; 2007; 53(6):778-84. PubMed ID: 18043165
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Heart-Hemopump Interaction: A Study of Hemopump Flow as a Function of Cardiac Activity.
    Meyns B; Siess T; Laycock S; Reul H; Rau G; Flameng W
    Artif Organs; 1996 May; 20(5):641-649. PubMed ID: 28868703
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Non-invasive estimation of pulsatile flow and differential pressure in an implantable rotary blood pump for heart failure patients.
    AlOmari AH; Savkin AV; Karantonis DM; Lim E; Lovell NH
    Physiol Meas; 2009 Apr; 30(4):371-86. PubMed ID: 19282557
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of pulsatile- and continuous-flow left ventricular assist devices on left ventricular unloading.
    Garcia S; Kandar F; Boyle A; Colvin-Adams M; Lliao K; Joyce L; John R
    J Heart Lung Transplant; 2008 Mar; 27(3):261-7. PubMed ID: 18342746
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hemodynamic and exercise performance with pulsatile and continuous-flow left ventricular assist devices.
    Haft J; Armstrong W; Dyke DB; Aaronson KD; Koelling TM; Farrar DJ; Pagani FD
    Circulation; 2007 Sep; 116(11 Suppl):I8-15. PubMed ID: 17846330
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Weaning of rotary blood pump recipients after myocardial recovery: a computer study of changes in cardiac energetics.
    Schima H; Vollkron M; Boehm H; Röthy W; Haisjackl M; Wieselthaler G; Wolner E
    J Thorac Cardiovasc Surg; 2004 Jun; 127(6):1743-50. PubMed ID: 15173732
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Implantation of the VentrAssist Implantable Rotary Blood Pump in sheep.
    James NL; van der Meer AL; Edwards GA; Snelling SR; Begg JD; Esmore DS; Woodard JC
    ASAIO J; 2003; 49(4):454-8. PubMed ID: 12918590
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of inflow cannula tip design on potential parameters of blood compatibility and thrombosis.
    Wong KC; Büsen M; Benzinger C; Gäng R; Bezema M; Greatrex N; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2014 Sep; 38(9):810-7. PubMed ID: 25234762
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fully autonomous preload-sensitive control of implantable rotary blood pumps.
    Arndt A; Nüsser P; Lampe B
    Artif Organs; 2010 Sep; 34(9):726-35. PubMed ID: 20883392
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assessment of aortic valve opening during rotary blood pump support using pump signals.
    Granegger M; Schima H; Zimpfer D; Moscato F
    Artif Organs; 2014 Apr; 38(4):290-7. PubMed ID: 24102321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.