These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8818241)

  • 21. Design and syntheses of three haptens to generate catalytic antibodies that cleave amide bonds with nucleophilic catalysis.
    Ersoy O; Fleck R; Blanco MJ; Masamune S
    Bioorg Med Chem; 1999 Feb; 7(2):279-86. PubMed ID: 10218819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalytic antibodies: evolution of protein function in real time.
    Lerner RA; Janda KD
    EXS; 1995; 73():121-38. PubMed ID: 7579971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structure of a catalytic antibody with a serine protease active site.
    Zhou GW; Guo J; Huang W; Fletterick RJ; Scanlan TS
    Science; 1994 Aug; 265(5175):1059-64. PubMed ID: 8066444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of serine proteases by peptidyl fluoromethyl ketones.
    Imperiali B; Abeles RH
    Biochemistry; 1986 Jul; 25(13):3760-7. PubMed ID: 3527255
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aspects of antibody-catalyzed primary amide hydrolysis.
    Titmas RC; Angeles TS; Sugasawara R; Aman N; Darsley MJ; Blackburn G; Martin MT
    Appl Biochem Biotechnol; 1994; 47(2-3):277-90; discussion 291-2. PubMed ID: 7944343
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Augmenting the efficacy of anti-cocaine catalytic antibodies through chimeric hapten design and combinatorial vaccination.
    Wenthur CJ; Cai X; Ellis BA; Janda KD
    Bioorg Med Chem Lett; 2017 Aug; 27(16):3666-3668. PubMed ID: 28709828
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antibody catalysis of peptidyl-prolyl cis-trans isomerization in the folding of RNase T1.
    Ma L; Hsieh-Wilson LC; Schultz PG
    Proc Natl Acad Sci U S A; 1998 Jun; 95(13):7251-6. PubMed ID: 9636134
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pyridoxal-5'-phosphate-dependent catalytic antibodies.
    Gramatikova S; Mouratou B; Stetefeld J; Mehta PK; Christen P
    J Immunol Methods; 2002 Nov; 269(1-2):99-110. PubMed ID: 12379355
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antibody catalysis of peptide bond formation.
    Jacobsen JR; Schultz PG
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5888-92. PubMed ID: 8016084
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A selenium-containing abzyme, the activity of which surpassed the level of native glutathione peroxidase.
    Luo G; Ding L; Liu Z; Yang T; Ni J
    Ann N Y Acad Sci; 1998 Dec; 864():136-41. PubMed ID: 9928088
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cyclic peptide formation catalyzed by an antibody ligase.
    Smithrud DB; Benkovic PA; Benkovic SJ; Roberts V; Liu J; Neagu I; Iwama S; Phillips BW; Smith AB; Hirschmann R
    Proc Natl Acad Sci U S A; 2000 Feb; 97(5):1953-8. PubMed ID: 10688882
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural basis for antibody catalysis of a disfavored ring closure reaction.
    Gruber K; Zhou B; Houk KN; Lerner RA; Shevlin CG; Wilson IA
    Biochemistry; 1999 Jun; 38(22):7062-74. PubMed ID: 10353817
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of aminophosphonate haptens for an aminoacylation reaction between methyl glucoside and a beta-alanyl ester.
    Lintunen T; Yli-Kauhaluoma JT
    Bioorg Med Chem Lett; 2000 Aug; 10(15):1749-50. PubMed ID: 10937739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Directed evolution governed by controlling the molecular recognition between an abzyme and its haptenic transition-state analog.
    Takahashi-Ando N; Kakinuma H; Fujii I; Nishi Y
    J Immunol Methods; 2004 Nov; 294(1-2):1-14. PubMed ID: 15604011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanistic analysis of the phosphonate transition-state analogue-derived catalytic and non-catalytic antibody.
    Nishi Y; Yamamoto N; Shimazaki K; Takahashi-Ando N; Kakinuma H; Jialin S; Ruzheinikov SN; Muranova TA; Rice DW; Kajihara Y
    J Biochem; 2007 Oct; 142(4):421-33. PubMed ID: 17981825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of novel hapten derivatives of 1alpha,25-dihydroxy-vitamin D3 and its 20-epi analogue.
    Blaehr LK; Björkling F; Calverley MJ; Binderup E; Begtrup M
    J Org Chem; 2003 Feb; 68(4):1367-75. PubMed ID: 12585876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct selection for a catalytic mechanism from combinatorial antibody libraries.
    Janda KD; Lo CH; Li T; Barbas CF; Wirsching P; Lerner RA
    Proc Natl Acad Sci U S A; 1994 Mar; 91(7):2532-6. PubMed ID: 8146149
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolution of shape complementarity and catalytic efficiency from a primordial antibody template.
    Xu J; Deng Q; Chen J; Houk KN; Bartek J; Hilvert D; Wilson IA
    Science; 1999 Dec; 286(5448):2345-8. PubMed ID: 10600746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Site-selective chemical modification of chymotrypsin using peptidyl derivatives bearing optically active diphenyl 1-amino-2-phenylethylphosphonate: Stereochemical effect of the diphenyl phosphonate moiety.
    Ono S; Nakai T; Kuroda H; Miyatake R; Horino Y; Abe H; Umezaki M; Oyama H
    Biopolymers; 2016 Nov; 106(4):521-30. PubMed ID: 26615968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of a monoclonal antibody produced in an attempt to mimic the active site of HIV aspartyl protease using haptens based on inhibitor models.
    Hanin V; Campagne JM; Dominice C; Mani JC; Dufour MN; Jouin P; Pau B
    J Immunol Methods; 1994 Aug; 173(2):139-47. PubMed ID: 8046248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.