These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 8818992)

  • 1. Degradation of antiflammin 2 under acidic conditions.
    Ye JM; Lee GE; Potti GK; Galelli JF; Wolfe JL
    J Pharm Sci; 1996 Jul; 85(7):695-9. PubMed ID: 8818992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative degradation of antiflammin 2.
    Ye JM; Wolfe JL
    Pharm Res; 1996 Feb; 13(2):250-5. PubMed ID: 8932445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of antiflammin 2 in aqueous solution.
    Wolfe JL; Lee GE; Potti GK; Gallelli JF
    J Pharm Sci; 1994 Dec; 83(12):1762-4. PubMed ID: 7891309
    [No Abstract]   [Full Text] [Related]  

  • 4. Chemical pathways of peptide degradation. IV. Pathways, kinetics, and mechanism of degradation of an aspartyl residue in a model hexapeptide.
    Oliyai C; Borchardt RT
    Pharm Res; 1993 Jan; 10(1):95-102. PubMed ID: 8430066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability and degradation profiles of Spantide II in aqueous solutions.
    Kikwai L; Babu RJ; Kanikkannan N; Singh M
    Eur J Pharm Sci; 2006 Feb; 27(2-3):158-66. PubMed ID: 16266798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical pathways of peptide degradation. II. Kinetics of deamidation of an asparaginyl residue in a model hexapeptide.
    Patel K; Borchardt RT
    Pharm Res; 1990 Jul; 7(7):703-11. PubMed ID: 2395797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of tyrosine sulfate in acidic solutions.
    Balsved D; Bundgaard JR; Sen JW
    Anal Biochem; 2007 Apr; 363(1):70-6. PubMed ID: 17307131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical pathways of peptide degradation. VI. Effect of the primary sequence on the pathways of degradation of aspartyl residues in model hexapeptides.
    Oliyai C; Borchardt RT
    Pharm Res; 1994 May; 11(5):751-8. PubMed ID: 8058648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanistic and kinetic study of the beta-lactone hydrolysis of Salinosporamide A (NPI-0052), a novel proteasome inhibitor.
    Denora N; Potts BC; Stella VJ
    J Pharm Sci; 2007 Aug; 96(8):2037-47. PubMed ID: 17554770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Open-chain peptides obtained by acidic hydrolytic cleavage of cyclosporin A.
    Magni F; Arcelloni C; Paroni R; Fermo I; Bonini PA; Del Puppo M; Manzocchi A; Galli Kienle M
    Biol Mass Spectrom; 1994 Aug; 23(8):514-8. PubMed ID: 7918693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The estimation of glutaminyl deamidation and aspartyl cleavage rates in glucagon.
    Joshi AB; Kirsch LE
    Int J Pharm; 2004 Apr; 273(1-2):213-9. PubMed ID: 15010145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of degradation products of aspartyl tripeptides by capillary electrophoresis-tandem mass spectrometry.
    De Boni S; Neusüss C; Pelzing M; Scriba GK
    Electrophoresis; 2003 Mar; 24(5):874-82. PubMed ID: 12627450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural characterisation of acetaldehyde adducts formed by a synthetic peptide mimicking the N-terminus of the hemoglobin beta-chain under reducing and nonreducing conditions.
    Sillanaukee P; Hurme L; Tuominen J; Ranta E; Nikkari S; Seppä K
    Eur J Biochem; 1996 Aug; 240(1):30-6. PubMed ID: 8797832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics and Degradation Mechanism of Adrenaline Derivative CpQ in Diluted Aqueous Solutions.
    Blasko A; Tam J; Gunasekera S; Eboreime A
    Biochemistry; 2018 Jul; 57(30):4536-4546. PubMed ID: 29975046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of degradation of 4-imidazolidinone prodrug types obtained from reacting prilocaine with formaldehyde and acetaldehyde.
    Larsen SW; Sidenius M; Ankersen M; Larsen C
    Eur J Pharm Sci; 2003 Oct; 20(2):233-40. PubMed ID: 14550890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and mechanism of the hydrolysis of thiamethoxam.
    Karmakar R; Singh SB; Kulshrestha G
    J Environ Sci Health B; 2009 Jun; 44(5):435-41. PubMed ID: 20183047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antiflammin-2, a nonapeptide of lipocortin-1, inhibits leukocyte chemotaxis but not arachidonic acid mobilization.
    Moreno JJ
    Eur J Pharmacol; 1996 Oct; 314(1-2):129-35. PubMed ID: 8957228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrolysis of poly(alkylene amidophosphate)s containing amino acid or peptide residues in the side groups. Kinetics and selectivity of hydrolysis.
    Baran J; Kaluzynski K; Szymanski R; Penczek S
    Biomacromolecules; 2004; 5(5):1841-8. PubMed ID: 15360296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of ricobendazole in aqueous solutions.
    Wu Z; Tucker IG; Razzak M; Medlicott NJ
    J Pharm Biomed Anal; 2009 Jul; 49(5):1282-6. PubMed ID: 19342190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism and kinetics of secretion degradation in aqueous solutions.
    Tsuda T; Uchiyama M; Sato T; Yoshino H; Tsuchiya Y; Ishikawa S; Ohmae M; Watanabe S; Miyake Y
    J Pharm Sci; 1990 Mar; 79(3):223-7. PubMed ID: 2338631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.