BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8819147)

  • 1. A radioimmunoassay for the tripeptide Gly-Trp-Met, a major metabolite of endogenous cholecystokinin in brain.
    Rose C; Vargas F; Bourgeat P; Schwartz JC
    Neuropeptides; 1996 Jun; 30(3):231-5. PubMed ID: 8819147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A serine peptidase responsible for the inactivation of endogenous cholecystokinin in brain.
    Rose C; Camus A; Schwartz JC
    Proc Natl Acad Sci U S A; 1988 Nov; 85(21):8326-30. PubMed ID: 3186727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of the tripeptide Tyr-Gly-Gly, a putative enkephalin metabolite in brain, using a sensitive radioimmunoassay.
    Llorens-Cortes C; Schwartz JC; Gros C
    FEBS Lett; 1985 Sep; 189(2):325-8. PubMed ID: 4043386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of a serine endopeptidase in the hydrolysis of exogenous cholecystokinin by brain slices.
    Camus A; Rose C; Schwartz JC
    Neuroscience; 1989; 29(3):595-602. PubMed ID: 2662053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protection by serine peptidase inhibitors of endogenous cholecystokinin released from brain slices.
    Rose C; Camus A; Schwartz JC
    Neuroscience; 1989; 29(3):583-94. PubMed ID: 2739903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a serine peptidase responsible for the inactivation of endogenous cholecystokinin in human brain.
    Rose C; Vargas F; Silhouette B; Devaux B; Schwartz JC
    Neuropeptides; 1995 Mar; 28(3):157-60. PubMed ID: 7791959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rat immunoreactive cholecystokinin (CCK): characterization using two chromatographic techniques.
    Bacarese-Hamilton AJ; Adrian TE; Chohan P; Bloom SR
    Regul Pept; 1985 Jun; 11(2):149-58. PubMed ID: 4035007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The endogenous tripeptide Tyr-Gly-Gly as a possible metabolite of opioid peptides in rat brain: identification, regional distribution, effects of lesions and formation in depolarized slices.
    Giros B; Llorens-Cortes C; Gros C; Schwartz JC
    Peptides; 1986; 7(4):669-77. PubMed ID: 3532054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of peptide 3D structure mimetics: rational design of novel peptoid cholecystokinin receptor antagonists.
    Low CM; Black JW; Broughton HB; Buck IM; Davies JM; Dunstone DJ; Hull RA; Kalindjian SB; McDonald IM; Pether MJ; Shankley NP; Steel KI
    J Med Chem; 2000 Sep; 43(19):3505-17. PubMed ID: 11000005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CCK-5: sequence analysis of a small cholecystokinin from canine brain and intestine.
    Shively J; Reeve JR; Eysselein VE; Ben-Avram C; Vigna SR; Walsh JH
    Am J Physiol; 1987 Feb; 252(2 Pt 1):G272-5. PubMed ID: 3826354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molecular nature of cholecystokinin in plasma. An in vivo immunosorption study in rabbits.
    Rehfeld JF
    Scand J Gastroenterol; 1994 Feb; 29(2):110-21. PubMed ID: 8171278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Release of cholecystokinin from rat midbrain slices and modulatory effect of D2DA receptor stimulation.
    Freeman AS; Chiodo LA; Lentz SI; Wade K; Bannon MJ
    Brain Res; 1991 Aug; 555(2):281-7. PubMed ID: 1682000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The distribution of cholecystokinin immunoreactivity in the central nervous system of the rat as determined by radioimmunoassay.
    Beinfeld MC; Meyer DK; Eskay RL; Jensen RT; Brownstein MJ
    Brain Res; 1981 May; 212(1):51-7. PubMed ID: 7225864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement and characterisation of human cholecystokinin-like immunoreactivity (CCK-LI) in tissues by radioimmunoassay.
    Bacarese-Hamilton AJ; Adrian TE; Bloom SR
    Clin Chim Acta; 1984 Dec; 144(2-3):213-24. PubMed ID: 6529856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of various molecular forms of cholecystokinin from canine mucosa by radioimmunoassay and bioassay.
    Mössner J; Zeeh JM; Eberlein G; Schäffer M; Regner U; Grandt D; Goebell H; Eysselein VE
    Digestion; 1991; 48(4):210-9. PubMed ID: 1724764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of endogenous Tyr-Gly-Gly, a putative enkephalin metabolite, in mouse brain: validation of a radioimmunoassay, localisation and effects of peptidase inhibitors.
    Llorens-Cortes C; Gros C; Schwartz JC
    Eur J Pharmacol; 1985 Dec; 119(3):183-91. PubMed ID: 3912194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. External pH changes affect NMDA-evoked and spontaneous release of cholecystokinin, somatostatin and noradrenaline from rat cerebrocortical nerve endings.
    Gemignani A; Paudice P; Longordo F; Raiteri M
    Neurochem Int; 2004 Oct; 45(5):677-85. PubMed ID: 15234110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-terminal fragments of intestinal cholecystokinin: evidence for release of CCK-8 by cleavage on the carboxyl side of Arg74 of proCCK.
    Blanke SE; Johnsen AH; Rehfeld JF
    Regul Pept; 1993 Jul; 46(3):575-82. PubMed ID: 8210517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of chymotrypsin on human cholecystokinin release: use of clostripain in the validation of a new radioimmunoassay.
    Beardshall K; Deprez P; Playford RJ; Alexander M; Calam J
    Regul Pept; 1992 Jul; 40(1):1-12. PubMed ID: 1438974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholecystokinin-like bioactivity in rat cerebral cortex.
    Varró A; Berger Z; Hajnal F; Lonovics J; Pap A
    Scand J Gastroenterol; 1981; 16(5):611-4. PubMed ID: 7323695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.